基于CNN-Transformer的轻量级图像超分辨率网络

Lightweight Image Super-resolution Network Based on CNN-Transformer

  • 摘要: 针对现有Transformer模型在单图像超分辨率任务中参数量大、计算复杂度高的问题,提出一种轻量化SISR模型——SEST(Super-resolution Enhanced Spatial Transformer)。该模型引入了多头注意力机制和特征分割模块,显著降低了内存需求,并通过局部特征混合器和增强空间注意力机制提升了纹理细节的恢复能力。实验结果表明,SEST在多个标准测试集上的表现优于现有的轻量化SISR模型。特别是在峰值信噪比(PSNR)、结构相似度(SSIM)和参数数量方面实现了更好的平衡,为资源受限环境下的图像增强提供了可行的解决方案。

     

    Abstract: To address the challenges of high parameter count and excessive computational complexity in existing Transformer-based models for single image super-resolution(SISR), we propose a lightweight SISR model, SEST(Super-resolution Enhanced Spatial Transformer). The model incorporates a multi-head attention mechanism and a feature segmentation module, significantly reducing memory requirements, while enhancing texture detail recovery through a local feature mixer and an enhanced spatial attention mechanism. Experimental validation shows that SEST outperforms existing lightweight SISR models on multiple benchmark datasets. Specifically, it achieves a better balance in peak signal-to-noise ratio(PSNR), structural similarity(SSIM), and parameter count, providing a viable solution for image enhancement in resource-constrained environments.

     

/

返回文章
返回