基于加权监督和双重映射的随机配置网络炉温预测模型

Stochastic Configuration Network Furnace Temperature Prediction Model Based on Weighted Supervision and Double Mapping

  • 摘要: 为了提高城市固废焚烧(MSWI)过程炉温数据驱动预测模型的鲁棒性和准确性,提出了一种利用加权监督和双重映射改进标准随机配置网络(WS-DM-SCN)的建模方法,用于构建炉温预测模型。首先,根据核风险敏感平均p损失函数设计了一个加权矩阵,将其嵌入到SCN的监督机制中,在噪声影响时约束连接权重、偏置参数的配置;其次,将Softplus函数与Sigmoid函数进行线性组合后作为SCN隐含层的激活函数,实现训练过程中隐含层特征的双重映射变换。理论上证明了应用上述两种改进策略时的SCN模型的收敛性。对比实验结果表明,WS-DM-SCN在不同比例异常值影响下的误差都得到了降低,验证了所提方法的有效性。

     

    Abstract: To improve the robustness and accuracy of a data-driven prediction model for furnace temperature in municipal solid waste incineration(MSWI), we propose a modeling method leveraging weighted supervision and double mapping to enhance the stochastic configuration network (WS-DM-SCN) and construct the furnace temperature prediction model. First, we design a weighting matrix based on the kernel risk-sensitive mean p-power error function, which is embedded into the supervision mechanism of SCN to constrain the connection weight configuration and bias parameters in the presence of noise. Second, we linearly integrate the Softplus and Sigmoid functions as the activation function of the SCN hidden layer to realize the double mapping transformation of the hidden layer features during the training. Thus, we confirm the convergence of the SCN model with the two improved strategies. The results of the comparative experiments reveal that the error obtained with WS-DM-SCN decreased under the effects of different outlier proportions, thereby verifying the effectiveness of the proposed method.

     

/

返回文章
返回