面向工艺路线发现的时间序列多视图聚类方法

Time-series Multi-view Clustering Method for Process Route Discovery

  • 摘要: 在工业生产中,发现和提取典型工艺路线对于提升生产效率和质量控制至关重要。传统的工艺路线提取方法通常依赖相似度计算和聚类分析流程,在多视图数据适应性和计算效率上存在不足。本文提出了一种结合时间序列平滑性约束与自适应加权的多视图子空间聚类算法。该方法通过自适应权重调整不同视角的数据表现,结合动态时间规整对时间序列数据进行有效对齐,从而精确地提取工艺路线。在不同视角下,本文方法在多个真实数据集上展现出卓越的聚类性能,且有效应对时间序列的波动性和不确定性。实验结果表明,本文提出的方法能够有效提升聚类准确性,在处理复杂的多视角数据与时间序列特征方面具有显著优势,体现了在多视角与时间序列聚类分析中的创新性。

     

    Abstract: The determination and extraction of typical process routes are crucial to improving production efficiency and quality control in industrial production. Traditional process route extraction methods generally rely on similarity calculations and clustering analysis, exhibiting limited multiview data adaptability and computational efficiency. To resolve these issues, a multiview subspace clustering algorithm that incorporates temporal-smoothness constraints and adaptive weighting is proposed. This algorithm employs adaptive weighting to adjust data representation across different views and combines dynamic time warping to effectively align time series data, thereby achieving precise process route extraction. This method demonstrates excellent clustering performance with various real-world datasets across multiple parameters and effectively addresses the volatility and uncertainty of time series data. The experimental results reveal that the proposed algorithm effectively improves clustering accuracy and can significantly address complex multiview data and time series features, thereby reflecting its innovativeness in multiview and time series clustering analysis.

     

/

返回文章
返回