基于变量筛选的关键工艺质量指标预测

Key Process Quality Index Prediction Based on Variable Selection

  • 摘要: 为提高连续工业过程关键工艺质量指标预测的准确性,提出了一种结合变量选择、深度特征提取和时序分析的工业质量预测新方法。首先,利用基于K近邻条件互信息的变量选择方法,从高维、冗余的数据中筛选出与质量变量高度相关的关键工艺变量;然后,采用改进的深度自编码器对筛选后的变量进行特征提取,并将原始特征与提取的深层特征进行融合,构建增强的特征集,通过引入正则化项增强了模型的鲁棒性和泛化能力;最后,利用长短期记忆网络构建质量预测模型,充分捕捉数据中的时间依赖关系。在3个工业案例的验证中,所提出的方法均获得较高的预测准确度,且在不同案例下表现出较低的预测误差与较小的输出波动幅度,表明其对连续工业过程具有一定的适用性。

     

    Abstract: To improve the prediction accuracy of key process quality index in continuous industrial processes, we propose a novel industrial quality prediction method combining variable selection, deep feature extraction, and temporal analysis. Firstly, we employ a K-nearest neighbor conditional mutual information-based variable selection method to screen key process variables highly correlated with quality variables from high-dimensional redundant data. Secondly, we adopt an improved deep autoencoder to perform feature extraction on the screened variables, where original features and extracted deep features are fused to construct enhanced feature sets, while the introduction of regularization terms enhances model robustness and generalization capability. Finally, we construct quality prediction models using long short-term memory networks to fully capture temporal dependencies in data. In verification tests across three industrial cases, the proposed method achieved high prediction accuracy while demonstrating lower prediction errors and smaller output fluctuation amplitudes under different operating conditions, indicating its certain applicability to continuous industrial processes.

     

/

返回文章
返回