基于多尺度冗余特征的轻量化特征融合模块

Lightweight Feature Fusion Module Based on Multi-scale Redundant Features

  • 摘要: 针对卷积神经网络在计算机视觉任务中表现优异,但常面临较长的推理时间、较大的参数量和计算量的问题,研究发现层次化卷积神经网络中存在多尺度特征冗余,并基于此开发了一种高效的多尺度特征融合模块——混合与差异增强模块。该模块由混合块与差异增强块组合而成:混合块合并冗余特征,利用冗余特征强化特征学习能力;差异增强块关注特征之间差异,优化模块在小样本任务中的表征能力。将混合与差异增强模块嵌入在不同任务的多个网络模型中。实验结果表明,混合与差异增强模块作为即插即用模块,能在无需对现有模型架构进行复杂的调整的情况下减少参数量、计算量和提升推理速度,同时具有更优异的特征表征能力,显著提高了性能。

     

    Abstract: Convolutional neural networks perform outstandingly in computer vision tasks but often face long inference times, large parameter sizes, and large floating point of operations. We identify multi-scale feature redundancy in hierarchical convolutional neural networks and develop an efficient multi-scale feature fusion module, the mixed and difference enhancement module. The mix block merges redundant features and enhances feature learning by leveraging this redundancy. The difference enhancement block focuses on the differences between features, optimizing the module's representation ability in small-sample tasks. We integrate the mixed and difference enhancement module into various network models for different tasks. Experiment results demonstrate that the mixed and difference enhancement module, as a plug-and-play component, reduces the parameter sizes, floating point of operations, and inference times without complex adjustments to the existing model. The mixed and difference enhancement module also exhibits superior feature representation abilities and significantly improves performance.

     

/

返回文章
返回