ICPS多尺度时空注意攻击检测模型

A Multi-Scale Spatiotemporal Attention Attack Detection Model in Industrial Cyber-Physical Systems

  • 摘要: 针对工业信息物理系统(Industrial Cyber Physical System, ICPS)攻击难以精准识别的问题,本文研究一种多尺度时空注意模型。利用小波卷积提取多尺度局部时频信息,并通过多分支的Transformer注意力头捕捉不同时间尺度的全局依赖;基于多尺度时间特征构建动态图结构,设计多阶段多模态图注意力网络,捕捉ICPS设备节点的多尺度空间依赖;融合多尺度时空特征并通过多层感知机预测,将预测误差作为异常分数进行异常判定。PyCharm上的仿真结果优于现有模型,验证了本文模型在ICPS攻击检测中的有效性。

     

    Abstract: To address the challenge of accurately identifying attacks on Industrial Cyber Physical Systems, this paper investigates a multi-scale spatiotemporal attention model. The model employs wavelet convolution to extract multi-scale local time-frequency information and utilizes multi-branch Transformer attention heads to capture global dependencies across different temporal scales. A dynamic graph structure is constructed based on multi-scale temporal features, and a multi-stage, multi-modal graph attention network is designed to capture the multi-scale spatial dependencies among ICPS device nodes. The multi-scale spatiotemporal features are then fused and fed into a multi-layer perceptron for prediction, with the prediction error serving as the anomaly score for anomaly detection. Simulations results in PyCharm demonstrate that the proposed model outperforms existing models, verifying its effectiveness in ICPS attack detection.

     

/

返回文章
返回