指示函数编码驱动的轻量化随机配置网络模型

Lightweight Stochastic Configuration Network Model Driven by Indicator Function Encoding

  • 摘要: 为解决神经网络在边缘计算设备部署中的高参数量和硬件需求问题,本文提出了一种指示函数编码驱动的轻量化随机配置网络模型(LSCN-IFE)。该模型采用新颖的编码策略,通过指示函数将输入数据映射为比特向量,并利用随机配置算法自适应地划分区间。进一步地,采用超维计算优化隐含层节点表示,使得网络节点仅依赖加法和异或运算,从而显著降低计算复杂度。理论分析证明该模型在适当条件下具有收敛性。实验结果表明,该模型在多个基准数据集和实际工业应用中,能够实现优异的预测精度、显著降低功耗,并有效提升实时预测能力。该研究为边缘计算中的神经网络部署提供了一种高效且可扩展的解决方案。

     

    Abstract: In order to solve the problem of many parameters and hardware requirements of neural networks in the deployment of edge computing devices. This paper proposes a lightweight stochastic configuration network model driven by indicator function encoding (LSCN-IFE). The model adopts a novel encoding strategy to map the input data into a bit vector through an indicator function, and uses a stochastic configuration algorithm to adaptively determine the interval. Furthermore, hyperdimensional computing is used to optimize the hidden layer node representation, so that network nodes only rely on addition and XOR (Exclusive OR) operations, thereby significantly reducing computational complexity. Theoretical analysis proves that the model has convergence under appropriate conditions. Experimental results show that the model can achieve excellent prediction accuracy, significantly reduce power consumption, and effectively improve real-time prediction capabilities in multiple benchmark data sets and actual industrial applications. This research provides an efficient and scalable solution for neural network deployment in edge computing.

     

/

返回文章
返回