基于CNN-BiGRU-Transformer模型的综合能源系统短期负荷预测

Short Term Load Forecasting of Integrated Energy System Based on CNN-BiGRU-Transformer Model

  • 摘要: 准确的负荷预测是综合能源系统经济调度和高效运行的关键,本文研究了基于CNN-BiGRU-Transformer(卷积神经网络-双向门控单元-Transformer)模型的综合能源系统多元负荷短期预测方法。首先,利用皮尔逊相关系数(PCC)选取最佳的输入特征。其次,利用变分模态分解(VMD)方法,将原始历史负荷分解为多个固有模态函数,以消除随机噪声并提取趋势和谐波。在此基础上构建CNN-BiGRU-Transformer模型,其中利用CNN-BiGRU提取时空特征,并利用Transformer的动态权重分配。最后,利用冠豪猪优化算法自适应搜索BiGRU模型参数,包括训练轮次、隐含层神经元数量和学习率,从而实现对CNN-BiGRU-Transformer模型结构的自动调优与性能提升。冷、热、电综合能源系统的仿真结果表明,与现有的负荷预测模型相比,提出的模型获得了更高的预测精度和更稳定的误差分布。

     

    Abstract: Accurate load forecasting is crucial for the economic dispatch and efficient operation of integrated energy systems. We propose a short-term forecasting method in this paper for multi-dimensional loads in integrated energy systems based on the CNN-BiGRU-Transformer (convolutional neural networks - bidirectional gated recurrent unit - Transformer) model. Firstly, Pearson correlation coefficient (PCC) is used to select the optimal input features. Secondly, using the variational mode decomposition method, the original historical load is decomposed into multiple intrinsic mode functions to eliminate random noise and extract trends and harmonics. On this basis, a CNN-BiGRU-Transformer model is constructed, which utilizes CNN-BiGRU to extract spatiotemporal features and dynamic weight allocation of Transformer. Finally, the crested porcupine optimization algorithm is used to adaptively search for BiGRU model parameters, including training epochs, number of hidden layer neurons, and learning rate, in order to achieve automatic optimization and performance improvement of the CNN-BiGRU-Transformer model structure. The simulation results of the integrated energy system of cooling, heating and power show that the proposed model achieves higher prediction accuracy and stabler error distribution compared to existing load forecasting models.

     

/

返回文章
返回