YOLOv8-DSM:高精度的小目标交通检测算法

YOLOv8-DSM: High-Precision Small Target Traffic Detection Algorithm

  • 摘要: 针对远距离、小目标和遮挡目标识别中存在的精度低、误检与漏检问题,本研究提出了一种基于YOLOv8的改进算法YOLOv8-DSM(deep small-object model),以替代原始框架。改进包括:采用深度卷积DWConv与高斯误差线性单元激活函数GELU替换原框架,降低计算复杂度并构建轻量化网络;设计SPPFCG(SPPF-Conv-AvgPool)模块替代SPPF(空间金字塔池化-快速版)模块,在减少局部特征损失的同时缓解过拟合并增强特征多样性;提出DPC2f(dual-pooling C2f)模块取代C2f模块以强化多尺度特征提取,提升不同尺寸目标的识别能力;增加小目标检测头与SA(置换注意力)机制,增强对小目标检测特征的敏感度;提出MPDIoU_P(最大精确度距离交并比_精确)损失函数,通过加强宽高误差惩罚项优化小目标定位。优化后的网络在检测小目标和遮挡目标时表现出更高精度,收敛速度加快,平均精度提升。在KITTI数据集上的评估显示,YOLOv8-DSM相较YOLOv8n的mAP(平均精度)提升4.6%,召回率提高7.1%,参数量减少590万。模块对比与消融实验验证了该算法在小目标和遮挡目标检测任务中的实用性与优势。泛化性实验在VisDrone数据集上进一步开展,结果充分验证了本次改进模型在交通场景目标检测任务中的有效性与泛化能力。

     

    Abstract: To address the issues of low accuracy, false positives, and false negatives in the detection of distant, small, and occluded objects, we proposes an improved algorithm named YOLOv8-DSM (deep small-object model), based on YOLOv8, as a replacement for the original framework. The improvements include: replacing the original framework with DWConv (depth-wise separable convolution) and GELU (Gaussian error linear unit) activation functions to reduce computational complexity and create a lightweight network; designing an SPPFCG (SPPF-Conv-AvgPool) module to replace the SPPF (spatial pyramid pooling - fast) module, minimizing local feature loss while mitigating overfitting and enhancing feature diversity; introducing the DPC2f (dual-pooling C2f) module as a substitute for C2f module to strengthen multiscale feature extraction and improve recognition of varying-sized targets; incorporating a small-target detection head and an SA (shuffle attention) mechanism to boost sensitivity to small-target detection features; proposing the MPDIoU_P (maximum precision distance IoU_ precise) loss function with enhanced penalty terms for width and height errors to refine small-target localization. The optimized network demonstrates superior accuracy in detecting small and obscured objects, accelerated convergence, and improved average precision. Evaluations on the KITTI dataset reveal that YOLOv8-DSM surpass YOLOv8n by4.6% higher mAP (mean average precision), 7.1% higher recall rate, and 5.9×106 fewer parameters. Module comparison and ablation experiments validate the algorithm’s practicality and advantages for small-target and occluded-object detection tasks. Generalization experiments conducted on the VisDrone dataset further validated the effectiveness and generalization ability of our improved model for object detection tasks in traffic scenarios.

     

/

返回文章
返回