仿射非线性系统的跟踪控制

袁赣南, 左志丹, 黄攀

袁赣南, 左志丹, 黄攀. 仿射非线性系统的跟踪控制[J]. 信息与控制, 2013, 42(2): 162-167. DOI: 10.3724/SP.J.1219.2013.00162
引用本文: 袁赣南, 左志丹, 黄攀. 仿射非线性系统的跟踪控制[J]. 信息与控制, 2013, 42(2): 162-167. DOI: 10.3724/SP.J.1219.2013.00162
YUAN Gannan, ZUO Zhidan, HUANG Pan. Tracking Control of Affine Nonlinear Systems[J]. INFORMATION AND CONTROL, 2013, 42(2): 162-167. DOI: 10.3724/SP.J.1219.2013.00162
Citation: YUAN Gannan, ZUO Zhidan, HUANG Pan. Tracking Control of Affine Nonlinear Systems[J]. INFORMATION AND CONTROL, 2013, 42(2): 162-167. DOI: 10.3724/SP.J.1219.2013.00162
袁赣南, 左志丹, 黄攀. 仿射非线性系统的跟踪控制[J]. 信息与控制, 2013, 42(2): 162-167. CSTR: 32166.14.xk.2013.00162
引用本文: 袁赣南, 左志丹, 黄攀. 仿射非线性系统的跟踪控制[J]. 信息与控制, 2013, 42(2): 162-167. CSTR: 32166.14.xk.2013.00162
YUAN Gannan, ZUO Zhidan, HUANG Pan. Tracking Control of Affine Nonlinear Systems[J]. INFORMATION AND CONTROL, 2013, 42(2): 162-167. CSTR: 32166.14.xk.2013.00162
Citation: YUAN Gannan, ZUO Zhidan, HUANG Pan. Tracking Control of Affine Nonlinear Systems[J]. INFORMATION AND CONTROL, 2013, 42(2): 162-167. CSTR: 32166.14.xk.2013.00162

仿射非线性系统的跟踪控制

详细信息
    作者简介:

    袁赣南(1945-),男,硕士,教授,博士生导师.研究领域为海洋运载器导航定位技术,基于舰船运动的组合导航系统中卡尔曼滤波技术,数据融合算法.左志丹(1987-),男,硕士.研究领域为非线性控制系统,变结构控制理论和鲁棒控制理论.

    通讯作者:

    左志丹,zuozhidan best@163.com

  • 中图分类号: TP13

Tracking Control of Affine Nonlinear Systems

  • 摘要: 针对仿射非线性系统的输出跟踪问题提出了一个新的控制器设计方法.通过构造跟踪误差的高阶常微分方程,使得该常微分方程对应的特征方程的根具有负实部,从而实现跟踪误差渐近收敛于0,使得系统具有期望的动态性能.通过该微分方程可以解决仿射非线性系统的跟踪控制问题.根据李亚普诺夫稳定性理论,证明了该算法在外界干扰满足一定条件时的鲁棒性.仿真结果验证了该算法的正确性和鲁棒性.
    Abstract: For the output tracking issue of affine nonlinear systems, a novel controller design method is proposed. High order ordinary differential equations for tracking errors are constructed. Therefore the characteristic equations corresponding to the ordinary differential equations have negative real part roots to ensure that tracking errors can converge to zero asymptotically and the system has desired dynamic performance. The tracking control of affine nonlinear systems can be solved by the differential equations. The robustness of the algorithm can be proved according to Lyapunov stability theory when the outside disturbance satisfies some certain conditions. Simulation results verify the correctness and robustness of the proposed algorithm.
计量
  • 文章访问数:  891
  • HTML全文浏览量:  1
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-11
  • 发布日期:  2013-04-19

目录

    /

    返回文章
    返回
    x