一类多目标量子行为粒子群优化算法收敛性分析及应用

施展, 陈庆伟, 胡维礼

施展, 陈庆伟, 胡维礼. 一类多目标量子行为粒子群优化算法收敛性分析及应用[J]. 信息与控制, 2013, 42(4): 407-415. DOI: 10.3724/SP.J.1219.2013.00407
引用本文: 施展, 陈庆伟, 胡维礼. 一类多目标量子行为粒子群优化算法收敛性分析及应用[J]. 信息与控制, 2013, 42(4): 407-415. DOI: 10.3724/SP.J.1219.2013.00407
SHI Zhan, CHEN Qingwei, HU Weili. Convergence Analysis of a Class of Multi-Objective Quantum-Behaved Particle Swarm Optimization Algorithms and Its Application[J]. INFORMATION AND CONTROL, 2013, 42(4): 407-415. DOI: 10.3724/SP.J.1219.2013.00407
Citation: SHI Zhan, CHEN Qingwei, HU Weili. Convergence Analysis of a Class of Multi-Objective Quantum-Behaved Particle Swarm Optimization Algorithms and Its Application[J]. INFORMATION AND CONTROL, 2013, 42(4): 407-415. DOI: 10.3724/SP.J.1219.2013.00407
施展, 陈庆伟, 胡维礼. 一类多目标量子行为粒子群优化算法收敛性分析及应用[J]. 信息与控制, 2013, 42(4): 407-415. CSTR: 32166.14.xk.2013.00407
引用本文: 施展, 陈庆伟, 胡维礼. 一类多目标量子行为粒子群优化算法收敛性分析及应用[J]. 信息与控制, 2013, 42(4): 407-415. CSTR: 32166.14.xk.2013.00407
SHI Zhan, CHEN Qingwei, HU Weili. Convergence Analysis of a Class of Multi-Objective Quantum-Behaved Particle Swarm Optimization Algorithms and Its Application[J]. INFORMATION AND CONTROL, 2013, 42(4): 407-415. CSTR: 32166.14.xk.2013.00407
Citation: SHI Zhan, CHEN Qingwei, HU Weili. Convergence Analysis of a Class of Multi-Objective Quantum-Behaved Particle Swarm Optimization Algorithms and Its Application[J]. INFORMATION AND CONTROL, 2013, 42(4): 407-415. CSTR: 32166.14.xk.2013.00407

一类多目标量子行为粒子群优化算法收敛性分析及应用

基金项目: 国家自然科学基金资助项目(60975075,61074023);江苏省自然科学基金资助项目(BK2008404)
详细信息
    作者简介:

    施 展(1984- ),男,博士后,工程师.研究领域为智能控制,多目标优化理论与算法.
    陈庆伟(1963- ),男,教授,博士生导师.研究领域为智能控制,网络控制系统,高精度伺服控制等.
    胡维礼(1941- ),男,教授,博士生导师.研究领域为智能控制,网络控制系统,高精度伺服控制,多目标优化理论与算法等.

    通讯作者:

    施展,z_shi2006@163.com

  • 中图分类号: TP18;TM77

Convergence Analysis of a Class of Multi-Objective Quantum-Behaved Particle Swarm Optimization Algorithms and Its Application

  • 摘要: 针对ε支配容易丢失Pareto最优前沿边界点的不足, 提出了一种新支配关系——ε优势支配.基于ε 优势支配的最优粒子保留策略构建了一类多目标量子行为粒子群优化(CMOQPSO)算法的总体构架, 分析了这类算法在一定条件下的全局收敛性.将一种满足总体构架的多目标量子行为粒子群优化算法用于求解输电网规划问题, 结果表明这类多目标量子行为粒子群优化算法具有良好的全局寻优能力.
    Abstract: For the drawback of ε-dominance, a new dominance relationship, ε-superior dominance, is proposed to solve the problem of easy loss of boundary point of Pareto optimal front. An overall framework for a class of multi-objective quantum-behaved particle swarm optimization (CMOQPSO) algorithms is constructed with the preserving strategy of optimal particle based on ε -superior dominance, and the global convergence of this class of algorithms is analyzed under certain conditions. A multi-objective quantum-behaved particle swarm optimization algorithm under the overall framework is applied to solving the problem of power transmission network planning, and the results denote that this class of CMOQPSO algorithms have good ability of global optimization.
计量
  • 文章访问数:  909
  • HTML全文浏览量:  0
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-21
  • 发布日期:  2013-08-19

目录

    /

    返回文章
    返回
    x