基于动态贝叶斯网络的缺失数据系统故障辨识

Fault Identification for Missing Data Systems with a Dynamic Bayesian Network Approach

  • 摘要: 针对工业系统监控中存在的非高斯性、动态性以及缺失数据等问题, 提出了基于动态贝叶斯网络的故障辨识方法. 构建了混合高斯输出动态贝叶斯网络(DBNMG)模型,并基于期望最大化算法推导了DBNMG模型的参数学习策略. 对于缺失数据问题,提出了一种非修补的DBNMG模型推理方法,利用部分的观测数据实现对故障的检测和辨识. 以连续搅拌釜式反应器(CSTR)为对象, 对本文提出的方法进行了仿真研究,仿真结果证明了本文所提方法的有效性.

     

    Abstract: For the problems in monitoring the industrial systems, such as non-Gaussianity, dynamic nature and missing data, a fault identification method based on dynamic Bayesian network is proposed. A dynamic Bayesian network with mixture of Gaussian output (DBNMG) is constructed, and a parameter learning strategy based on expectation maximization algorithm is deduced. For the missing data issue, a non-imputation inference method for DBNMG is proposed to conduct the fault detection and identification with the partially observed data. The proposed approach is evaluated with the continuous stirred tank reactor (CSTR). Simulation results demonstrate the effectiveness of the proposed method.

     

/

返回文章
返回