动态T-S模糊Elman网络及其应用

Dynamic T-S Fuzzy Elman Network and Its Application

  • 摘要: 结合T-S模糊模型和Elman网络的优点,提出了一种动态T-S模糊Elman网络(DTSFEN).该网络具有全局收敛的递归结构,动态信息处理能力强;采用误差反向传播学习算法对网络结构参数和规则参数进行学习,提高了网络学习效率;并利用李亚普诺夫稳定性定理证明了网络的全局收敛特性;最后,将DTSFEN应用于非线性函数逼近和污泥容积指数(SVI)的软测量中.仿真实验结果表明,与正交最小平方(OLS)模型和Elman网络等相比,DTSFEN具有较高的精度、较快的收敛速度和较强的鲁棒性.

     

    Abstract: A dynamic T-S (Takgi-Sugeno) fuzzy Elman network (DTSFEN), which has the advantages of the T-S fuzzy model and Elman network, is proposed. This DTSFEN can process dynamic information with a globally convergent recursive structure. Moreover, an adaptive error back-propagation learning algorithm is designed to update the structure parameters and the fuzzy rule parameters, which can improve the learning efficiency of the DTSFEN. Then, the global convergence of the DTSFEN is proven using the Lyapunov stability theorem. Finally, the DTSFEN is used for nonlinear function approximation and sludge volume index (SVI) soft sensor. The experimental results show that the DTSFEN has a faster convergence rate and better accuracy and robustness than the orthogonal least squares (OLS) and Elman network.

     

/

返回文章
返回