人工萤火虫与差分进化混合优化算法

A Hybrid Optimization Algorithm Based on Artificial Glowworm Swarm and Differential Evolution

  • 摘要: 人工萤火虫优化算法在寻找函数全局最优值时存在着收敛速度慢、易陷入局部最优、收敛成功率和计算精度低等缺点,为此,文中将人工鱼群算法的觅食行为嵌入到人工萤火虫算法,并与差分进化算法融合,提出一种基于人工萤火虫与差分进化的混合优化算法.最后,通过4个典型测试函数和1个应用实例进行测试,结果表明所提出的混合算法收敛速度快,计算精度高,其整体逼近性能比基本人工萤火虫和差分进化算法更优.

     

    Abstract: When searching for the globally optimal solution of function,there exist some shortcomings in artificial glowworm swam optimization(GSO),such as the slow convergence speed,easily falling into the local optimum value,the low success rate of convergence and computational accuracy.This paper embeds predatory behavior of artificial fish swarm algorithm (AFSA) into GSO and proposes a hybrid optimization algorithm which combines the GSO with differential evolution (DE).Finally,the algorithm is put through four typical test functions and an application example.The results show that the hybrid algorithm has better convergence efficiency and higher computational precision,and its overall approximation performance is superior to basic artificial GSO and DE.

     

/

返回文章
返回