基于BP-GA混合学习算法的神经网络短期负荷预测

杨延西, 刘丁, 李琦, 郑岗

杨延西, 刘丁, 李琦, 郑岗. 基于BP-GA混合学习算法的神经网络短期负荷预测[J]. 信息与控制, 2002, 31(3): 284-288.
引用本文: 杨延西, 刘丁, 李琦, 郑岗. 基于BP-GA混合学习算法的神经网络短期负荷预测[J]. 信息与控制, 2002, 31(3): 284-288.
YANG Yan-xi, LIU Ding, LI Qi, ZHENG Gang. SHORT TERM LOAD FORECASTING USING A MULTILAYER NEURAL NETWORK WITH BP-GA MIXED ALGORITHMS[J]. INFORMATION AND CONTROL, 2002, 31(3): 284-288.
Citation: YANG Yan-xi, LIU Ding, LI Qi, ZHENG Gang. SHORT TERM LOAD FORECASTING USING A MULTILAYER NEURAL NETWORK WITH BP-GA MIXED ALGORITHMS[J]. INFORMATION AND CONTROL, 2002, 31(3): 284-288.

基于BP-GA混合学习算法的神经网络短期负荷预测

详细信息
    作者简介:

    杨延西(1975- ),男,博士生.研究领域为控制理论与控制工程.
    刘丁(1957- ),男,现为西安理工大学副校长,教授,博士生导师.长期从事工业自动化、智能控制理论与应用等方面的研究,目前承担多项国家重点科研任务,发表论文30余篇,获国家及省部级科技进步奖4项.
    李琦(1957- ),男,教授.研究领域为工业过程检测与控制.Email:yangyanxi@xaut.Edu.cn

  • 中图分类号: TP13

SHORT TERM LOAD FORECASTING USING A MULTILAYER NEURAL NETWORK WITH BP-GA MIXED ALGORITHMS

  • 摘要: 本文提出了修正的遗传算法和BP算法相结合的短期负荷预测方法,与传统神经网络方法相比,该方法可以加快网络学习速度和提高学习精度.我们用遗传算法来训练网络参数,直到误差趋于一稳定值,然后用优化的权值进行BP算法,实现短期负荷预测.在构建网络模型时,我们考虑了气候因素的影响,并把它作为网络的一组输入点.实验结果表明基于这一方法的负荷预测系统较高的精度和实时性.
    Abstract: In this paper, a modified method (BP-GA) for short-term load forecast is presented, which can quicken the learning speed of the network and improve the predicting precision compared with the traditional artificial neural network. We use GAs to train connection weights of multi-layer feed forward neural network (BP) until the learning error has tended to stability, here, the best initial weights have been found. Then we use BP method to finish short-term load forecast process. We also consider the influence of climate for the short-term load and make it as one of the input for the BP. Experimental results show that the short-term load forecast system based on BP-GA has high precision and high learning rate.
  • [1] Shin-Tzo chen.Weather Sensitive Short-Term Load Forecasting Using Nonfully Connected Artificial Neural Network.Trans.OnPWRS.1992,3:1098~1105
    [2] K Y Lee.Short-Term Load Forecasting Using An Artificial Neural Network.Trans.On PWRS.1992,1:124~131
    [3] Zhichun Mu,Ke Liu,Application of Genetic Algorithms in Identifieation of Linear Time-Varying System,JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNLOLGY BEIJING,2000,7(1):58~62
    [4] Ho K L,et al.(1992).Short Term Load Forecasting Using a Multilayer Neural Network with an Adaptive Learning Algorithm.IEEE Trans.on Power Systerms,1992,7:141~148
    [5] 邹森.时间序列自适应短期负荷预测.山东工业大学学报,1988,18(2)
    [6] 欧建平,李丽娟.人工神经网络在电力系统短期负荷预测中的应用.广东电力,1999,12(2)
计量
  • 文章访问数:  1164
  • HTML全文浏览量:  0
  • PDF下载量:  328
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-09-09
  • 发布日期:  2002-06-19

目录

    /

    返回文章
    返回
    x