超空化航行器稳定性分析及最优控制设计

Stability Analysis and Optimal Control Design for Supercavitating Vehicles

  • 摘要: 针对超空化航行器与超空泡之间的非线性滑行力带来的稳定控制困难问题,提出了基于圆判据的超空化航行器稳定性分析方法及其最优控制设计.以Dzielski提出的航行器模型为研究对象,通过一系列系统变换使其成为线性系统环节和非线性环节反馈连接的形式.运用圆判据定理得出系统绝对稳定的充分条件,使超空化航行器系统绝对稳定性与其Nyquist曲线的位置直接联系起来,简捷地解决了Dzielski模型系统稳定性的判定问题.针对实际工程中控制量约束条件下激励饱和造成的系统失稳问题,设计了最优控制策略.经仿真验证,该策略实现了在控制量约束范围内对航行器的稳定控制.

     

    Abstract: In order to solve the stable control problems produced by the nonlinear planing force between supercavitating vehicle and supercavity,a circle-criterion-based stability analysis method and its optimal control law are proposed.With the supercavitating vehicle model proposed by Dzielski as the research object,a series of system transformations are performed,and the supercavitating vehicle model is transformed into the feedback connection between a linear part and a nonlinear part.The sufficient condition of global system stability is obtained based on circle criterion by mapping the Nyquist plot of the system,which simply solves the problem of stability criterion in Dzielski's model.In order to solve the problem of system instability caused by actuator saturation,an optimal control law is designed,which achieves stability control of the supercavitating vehicle system when the control variables are restricted.Simulations are made to validate the effectiveness of the proposed method.

     

/

返回文章
返回