一类非平坦函数的多核最小二乘支持向量机的鲁棒回归算法

A Non-flat Function Robust Regression Algorithm Using Multi-kernel LS-SVM

  • 摘要: 给出了标准最小二乘支持向量机的数学回归模型,并提出了多核最小二乘支持向量机算法,用于提高非平坦函数的回归精度.运用谱系聚类方法解决多核最小二乘支持向量机的解缺乏稀疏性的问题.利用偏最小二乘回归方法对多核最小二乘支持向量机进行了鲁棒回归.通过仿真实例证实了所提方法的有效性.

     

    Abstract: The mathematical regression model of standard least squares support vector machine(LS-SVM) is presented and a multi-kernel least squares support vector machine(MLS-SVM) algorithm is proposed to enhance the regression accuracy of non-flat functions.The hierarchical clustering method is applied to deal with the problem that the solution of MLS-SVM is lack of sparseness.Partial least squares regression(PLSR) method is adopted to realize robust regression of MLS-SVM.A simulation example is given to validate the effectiveness of the presented method.

     

/

返回文章
返回