一种新的支持向量回归核函数构建方法

A New Method for Constructing Kernel Function of Support Vector Regression

  • 摘要: 首先,讨论了支持向量回归(support vectorreg ression,SVR)的基本原理.然后,从信息几何的角度分析了核函数的几何结构,通过共形变换(conformal transformation)构建与数据依赖(data-dependent)的核函数,使得特征空间在支持向量附近的体积元缩小,以改善SVR的机器性能.实验结果表明了方法的有效性.

     

    Abstract: The principle of support vector regression(SVR)is firstly discussed,then geometry of kernel function is analyzed from the viewpoint of information geometry,and the kernel function is contructed in data-dependent way by a conformal transformation,which reduces volume elements locally in neighborhoods of support vectors in feature space.This makes the performance of SVR improved.Simulation results show the effectiveness of the method.

     

/

返回文章
返回