多采样率数字控制系统综述

肖建, 徐志根

肖建, 徐志根. 多采样率数字控制系统综述[J]. 信息与控制, 2003, 32(5): 436-441.
引用本文: 肖建, 徐志根. 多采样率数字控制系统综述[J]. 信息与控制, 2003, 32(5): 436-441.
XIAO Jian, XU Zhi-gen. SURVEY ON THE RESEARCH OF MULTIRATE DIGITAL CONTROL SYSTEMS[J]. INFORMATION AND CONTROL, 2003, 32(5): 436-441.
Citation: XIAO Jian, XU Zhi-gen. SURVEY ON THE RESEARCH OF MULTIRATE DIGITAL CONTROL SYSTEMS[J]. INFORMATION AND CONTROL, 2003, 32(5): 436-441.

多采样率数字控制系统综述

基金项目: 国家自然科学基金资助项目(69774024)
详细信息
    作者简介:

    肖建(1950- ),男,博士,西南交通大学教授,博士生导师.研究领域为计算机控制系统、鲁棒控制,电传动控制系统等.
    徐志根(1962- ),男,硕士,西南交通大学副教授.研究领域为计算机控制系统、智能控制等.

  • 中图分类号: TP13

SURVEY ON THE RESEARCH OF MULTIRATE DIGITAL CONTROL SYSTEMS

  • 摘要: 本文给出了多采样率数字控制系统的发展和目前研究情况的综述.根据系统中各采样周期之间的关系,多采样率控制系统可以分为输入多采样率控制系统.输出多采样率控制系统和广义多采样率控制系统等.它们又分别对应于采用广义保持器、广义采样器和周期时变控制器的数字控制系统.文中对这三类系统的特点和近期研究成果进行了系统的介绍与讨论.由于“因果条件”,多采样率控制器具有结构约束.本文综述了几类满足这一结构约束的多采样率控制器的设计方法和各类多采样率控制系统.
    Abstract: The present state and the development of the multirate digital control systems are reviewed in this paper. According to the relationships of the different sampling periods of the system, the multirate digital control systems can be catalogued as multirate input controller, multirate output controller and generalized multirate sampled-data control system. They correspond to digital systems with generalized holds, with generalized samplers and with periodic time varying controllers, respectively. The characteristics as well as the recent research results are discussed and outlined. The well-known causality condition, puts the structure constraints on the multirate controllers. The design methods to overcome such constraints and different multirate digital control systems are surveyed.
  • [1] Kranc G M. Input-output analysis of multirate feedback system [J].IRE Trans. Automat. Contr., 1975, 3(1):21~28.
    [2] Chammas A B, Leondes C T. Pole assignment by piecewise constant output feedback [J].Int. J. Control, 1979, 29(1):31~38.
    [3] Araki M, Hagiwara T. Pole assignment by multi-rate sampled-data output feedback [J].Int. J. Control, 1986,44(6):1661~1673.
    [4] Patton R J, Liu G P, Patel P. Sensitivity properties of multirate feedback control system based on eigen-structure assignment [J].IEEE Trans. Automat. Contr., 1995, 40(2):337~342.
    [5] Berger C S, Peduto D. Robust digital control using multirate sampling [J].Int. J. Control, 1997, 67(5):813~824.
    [6] 肖建,郭垂规.输入多采样率数字控制系统的鲁棒性极点配置 [J].西南交通大学学报,1999,34(40):379~383.
    [7] Hagiwara T, Araki M. Design of a stable state feedback controller based on the multirate sampling of plant output [J].IEEE Trans. Automat. Contr., 1988 , 33(9):812~819.
    [8] Hagiwara T, Fujimura T, Araki M. Generalized multirate output controllers [J].Int. J. Control, 1990,52(3):579~612.
    [9] Er M J, Anderson B D O. Practical issue in multirate output controllers [J].Int. J. Control, 1990, 53(5):1005~1020.
    [10] Er M J, Anderson B D O. Performance study of multi-rate output controllers under noise disturbance [J].Int. J. Control , 1992, 56(3):531~545.
    [11] Mital J, Chida Y, Kaku Y, et al. Two-delay robust digital control and its applications-avoiding the problem on unstable limiting zeros [J].IEEE Trans. Automat. Contr., 1990, 35(8):961~970.
    [12] Kalman R E, Bertram J E. A unified approach to the theory of sampling system [J].J. Franklin Inst., 1959, 267(3):405~436.
    [13] Araki M, Yamamoto K. Multivariable multirate sampled-data systems:state-space description, transfer characteristics and Nyquist criterion [J].IEEE Trans. Automat. Contr., 1986, 31(1):145~154.
    [14] Godbout L F, Jordan D, Apostolakis I S. Closed-loop model for general multirate digital control system [J].IEEE Proc. Pt. D, 1990, 137(5):329~336
    [15] 肖建.多采样率数字控制系统的函数空间模型 [J].控制理论与应用, 2000,17(2):296~299.
    [16] Khargonekar P P, Poolla K, Tannenbaum A. Robust control of linear time-invariant plants using periodic compensation [J].IEEE Trans. Automat. Contr.,1985,30(11):1088~1096.
    [17] Francis B A , Georgiou T T. Stability theory for linear time-invariant plants with periodic digital controllers [J].IEEE Trans. Automat. Contr, 1988,33(9):820~832.
    [18] Chen T W, Qiu L. H∞ design of general multirate sampled-data control systems [J].Automatica., 1994, 30(9):1139~1152.
    [19] Godbout L F, Jordan D, Striefler' M E. Pole placement algorithm for multirate sampled linear system [J].Automatica,1994,30(4):723~727.
    [20] Colaneri P, Scattolimi R, Schiavoni V. Stabilization of multirate sampled-data linear systems [J].Automatica, 1990,26(2):377~380.
    [21] Meyer D G. A parameterization of stabilizing controllers for multirate sampled-data systems [J].IEEE Trans. Automat. Contr., 1990,35(2):233~237
    [22] Apostolakis I, Jordan D. A time invariant approach to multirate optimal regulator design [J].Int. J. Control, 1991,53(6):1233~1254.
    [23] Voulgaris P G, Dahleh M A, Valavani L S. H∞ and H2 optimal controllers for periodic and multirate systems [J].Automatica, 1994, 30(1):251~263.
    [24] Qiu L, Tan K. Direct state space solution of multirate sample-data H2 optimal control [J].Automatica, 1998, 34(7):1431~1437.
    [25] Voulgaris P G, Bamieh B. Optimal H∞ control of hybrid multirate systems [A].Proc 31st Conf, Decision and Control [C].Tuscon USA:IEEE Press, 1992.457~462.
    [26] Qiu L, Chen T. Multirate sampled-data systems:all H∞ suboptimal controllers and the minimum entropy controller [J].Automatica, 1999, 44(3):537~550.
    [27] Dahleh M A, Voulgaris P G, Valavni L S. Optimal and robust controllers for periodic and multirate systems [J].IEEE Trans. Automat. Contr., 1992, 37(1):90~99.
    [28] Ortega R, Kreisselmeier G. Discrete-time model reference adaptive control for continuous-time systems using generalized sampled-data hold functions [J].IEEE Trans. Automat. Contr., 1990, 35(3):334~341.
    [29] Zhang C, Middleton R H, Evans R J. An algorithm for multirate sampling adaptive control [J].IEEE Trans. Automat. Contr.,1989,34(7):792~795.
    [30] Ling K V, Lim K W. A state space GPC with extensions to multirate control. Automatica, 1996, 32(7):1067~1071.
    [31] Kabamba P T, Yang C. Simultaneous controller design for linear time-invariant systems[J].IEEE Trans. Automat. Contr., 1991,36(1):106~111.
    [32] Sezer M E, Siljak D D. Decentralized multirate control [J].IEEE Trans. Automat. Contr., 1990, 35(1):60~65.
    [33] Yan W Y, Bitmead R R. On applications of generalized sampled-data hold functions to robust enhancement [A].Proc 12nd IFAC Conf [C].Sydney Australia:Institution of Engineers, 1993. 275~278.
    [34] Araki M. Recent development in digital control theory [A].Proc 12nd IFAC Conf [C].Sydney Australia:Institution of Engineers, 1993.251~260.
    [35] Shamma J S, Dahleh M A. Time-varying versus time-invariant compensation for rejection of persistent bounded disturbances and robust stabilization[J].IEEE Trans. Automat. Contr., 1991,36(7):838~846
    [36] Feuer A, Goodwin G C. Generalized sample hold functions-frequency domain analysis of robustness, sensitivity and intersample difficulties[J].IEEE Trans. Automat. Contr., 1995,39(9):1042~1047.
    [37] Hu B, Michel A N. Some qualitative properties of multirate digital control systems[J].IEEE Trans. Automat. Contr., 1999, 44(6):765~770.
    [38] Grasselli O M, Jetto L, Longhi S. Ripple-free dead-beat tracking for multirate sampled-data systems[J].Int. J. Control, 1995,65(6):1437~1455.
计量
  • 文章访问数:  1515
  • HTML全文浏览量:  2
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-01-07
  • 发布日期:  2003-10-19

目录

    /

    返回文章
    返回
    x