基于支持向量机的在线建模方法及应用

郑小霞, 钱锋

郑小霞, 钱锋. 基于支持向量机的在线建模方法及应用[J]. 信息与控制, 2005, 34(5): 636-640.
引用本文: 郑小霞, 钱锋. 基于支持向量机的在线建模方法及应用[J]. 信息与控制, 2005, 34(5): 636-640.
ZHENG Xiao-xia, QIAN Feng. An SVM-based On-line Modeling Method and Its Application[J]. INFORMATION AND CONTROL, 2005, 34(5): 636-640.
Citation: ZHENG Xiao-xia, QIAN Feng. An SVM-based On-line Modeling Method and Its Application[J]. INFORMATION AND CONTROL, 2005, 34(5): 636-640.

基于支持向量机的在线建模方法及应用

基金项目: 国家973计划资助项目(2002CB3122000);国家自然科学基金资助项目(60074027);国家863计划资助项目(2003AA412010)
详细信息
    作者简介:

    郑小霞(1978- ),女,博士生.研究领城为工业过程故障诊断与优化.
    钱锋(1961- ),男,博士,教授,博士生导师.研究领域为神经网络、模糊逻辑以及专家系统等智能控制技术及其在石油化工生产过程模型化、软测量、先进控制、故障诊断和优化控制中的应用.

  • 中图分类号: TP181

An SVM-based On-line Modeling Method and Its Application

  • 摘要: 针对常规v支持向量回归用于在线建模时存在的问题,提出了一种支持向量回归在线建模方法.利用贝叶斯证据框架优化模型参数,通过判断新增观测值是否满足原来的KKT条件,并对历史数据给予不同程度的加权以充分利用最新的数据信息,使模型随着时间的推移在线更新.工业PTA氧化过程中4-CBA含量预测的实例表明,该方法能很好地跟踪4-CBA含量的变化趋势,是一种有效的在线建模方法.
    Abstract: In order solve the problems in the application of v support vector regression(v-SVR) to on-line modeling,a support vector regression on-line modeling method is proposed.Bayesian evidence framework is used to optimize the model parameters.Through determining whether the new observation satisfies the original KKT conditions and assigning different weighting factors to the historical data,the latest data can be used sufficiently,and the model can be refreshed on-line as time passes by.The proposed approach is successfully applied to predict the concentration of 4-carboxybenzaldhyde(4-CBA) in industrial purified terephthalic acid(PTA) oxidation process.The results indicate that the proposed method can track the trend of 4-CBA and it is an effective method for on-line modeling.
  • [1] Vapnik V. The Nature of Statistical Learning Theory [M].New York:Springer, 1995.
    [2] Vapnik V. Statistical Learning Theory [M].New York:Springer,1998.
    [3] Scholkopf B, Smola A J. New support vector algorithms [J].Neural Computation, 2000, 12(5):1207~1245.
    [4] Martin M. On-line Support Vector Machines for Function Approximation [R].Barcelona:Software Department, Universitat Politecnica de Catalunya, 2002.
    [5] Ma J S, Theiler J, Perkins S. Accurate on-line support vector regression [J].Neural Computation, 2003, 15(11):2683~2704.
    [6] 阎威武,常俊林,邵惠鹤.基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真[J].上海交通大学学报,2004,38(4):524~532.
    [7] 周伟达,张莉,焦李成.支撑矢量推广能力分析[J].电子学报,2001,29(5):1~5.
    [8] 周伟达,张莉,焦李成.自适应支撑矢量机多用户检测[J].电子学报,2002,31(1):1~6.
    [9] Mackay D J C. Probable network and plausible predictions-a review of practical Bayesian methods for supervised neural networks [J].Network:Computation in Neural Systems, 1995,6(3):469~505.
计量
  • 文章访问数:  1934
  • HTML全文浏览量:  0
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-05-22
  • 发布日期:  2005-10-19

目录

    /

    返回文章
    返回
    x