基于支持向量回归的非线性系统辨识

张元林, 郑南宁, 贾新春

张元林, 郑南宁, 贾新春. 基于支持向量回归的非线性系统辨识[J]. 信息与控制, 2003, 32(5): 471-474.
引用本文: 张元林, 郑南宁, 贾新春. 基于支持向量回归的非线性系统辨识[J]. 信息与控制, 2003, 32(5): 471-474.
ZHANG Yuan-lin, ZHENG Nan-ning, JIA Xin-chun. APPLICATION OF SUPPORT VECTOR REGRESSION TO NONLINEAR SYSTEM IDENTIFICATION[J]. INFORMATION AND CONTROL, 2003, 32(5): 471-474.
Citation: ZHANG Yuan-lin, ZHENG Nan-ning, JIA Xin-chun. APPLICATION OF SUPPORT VECTOR REGRESSION TO NONLINEAR SYSTEM IDENTIFICATION[J]. INFORMATION AND CONTROL, 2003, 32(5): 471-474.

基于支持向量回归的非线性系统辨识

基金项目: 国家自然科学基金资助项目(60024301) ;863计划资助项目(2001AA114202)
详细信息
    作者简介:

    张元林(1968- ),男,副研究员,在职博士生.研究领域为机器学习,智能控制,计算机视觉.
    郑南宁(1952- ),男,教授,中国工程院院士.研究领域为模式识别与计算机视觉.
    贾新春(1964- ),男,教授.研究领域为鲁棒与自适应控制.

  • 中图分类号: TP273;TP391.4

APPLICATION OF SUPPORT VECTOR REGRESSION TO NONLINEAR SYSTEM IDENTIFICATION

  • 摘要: 本文将支持向量回归方法应用于非线性系统辨识问题.基于高斯支持向量回归及 不敏感损失函数的基本思想,本文提出一个非线性系统辨识的新算法,并将其与用于系统辨识的径向基函数神经网络进行了比较.模拟实验表明,支持向量回归方法可以成为非线性系统辨识的有力工具.
    Abstract: This paper applies Support Vector Regression(SVR) to nonlinear system identification problem. Using the basic idea of Gaussian SVR and -insensitive loss function, we propose a new algorithm for nonlinear system identification and compare the Gaussian SVR with the radial basis function(RBF) network for system identification. The performance of the SVR is illustrated by a simulation example involving a benchmark nonlinear system.
  • [1] Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks [J].IEEE Trans. on Neural Networks, 1990,1:4~27.
    [2] Chan W C, Chan C W, Cheung, K C, et al. On the modelling of nonlinear dynamic systems using support vector neural networks [J].Engineering Applications of Artificial Intelligence, 2001, 14:105~113.
    [3] Vapnik V N. The Nature of Statistical Learning Theory [M].NewYork:Springer-Verlag, 1995.
    [4] Smola A. Learning with kernels [D].Berlin, Germany:Technischen Universit¨at Berlin, 1998.
    [5] Gao J B, Gunn S R, Harris C J. A probabilistic framework for SVM regression and error estimation [J].Machine Learning, 2002,46:71~89.
    [6] Kwok J T-Y. The evidence framework applied to support vector machines [J].IEEE Trans. on Neural Networks, 2000,11:1162~1173.
计量
  • 文章访问数:  1360
  • HTML全文浏览量:  0
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-12-02
  • 发布日期:  2003-10-19

目录

    /

    返回文章
    返回
    x