APPLICATION OF SUPPORT VECTOR REGRESSION TO NONLINEAR SYSTEM IDENTIFICATION
-
摘要: 本文将支持向量回归方法应用于非线性系统辨识问题.基于高斯支持向量回归及 不敏感损失函数的基本思想,本文提出一个非线性系统辨识的新算法,并将其与用于系统辨识的径向基函数神经网络进行了比较.模拟实验表明,支持向量回归方法可以成为非线性系统辨识的有力工具.Abstract: This paper applies Support Vector Regression(SVR) to nonlinear system identification problem. Using the basic idea of Gaussian SVR and -insensitive loss function, we propose a new algorithm for nonlinear system identification and compare the Gaussian SVR with the radial basis function(RBF) network for system identification. The performance of the SVR is illustrated by a simulation example involving a benchmark nonlinear system.
-
-
[1] Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks [J].IEEE Trans. on Neural Networks, 1990,1:4~27. [2] Chan W C, Chan C W, Cheung, K C, et al. On the modelling of nonlinear dynamic systems using support vector neural networks [J].Engineering Applications of Artificial Intelligence, 2001, 14:105~113. [3] Vapnik V N. The Nature of Statistical Learning Theory [M].NewYork:Springer-Verlag, 1995. [4] Smola A. Learning with kernels [D].Berlin, Germany:Technischen Universit¨at Berlin, 1998. [5] Gao J B, Gunn S R, Harris C J. A probabilistic framework for SVM regression and error estimation [J].Machine Learning, 2002,46:71~89. [6] Kwok J T-Y. The evidence framework applied to support vector machines [J].IEEE Trans. on Neural Networks, 2000,11:1162~1173.
计量
- 文章访问数: 1360
- HTML全文浏览量: 0
- PDF下载量: 36