基于支持向量回归的非线性系统辨识
APPLICATION OF SUPPORT VECTOR REGRESSION TO NONLINEAR SYSTEM IDENTIFICATION
-
摘要: 本文将支持向量回归方法应用于非线性系统辨识问题.基于高斯支持向量回归及 不敏感损失函数的基本思想,本文提出一个非线性系统辨识的新算法,并将其与用于系统辨识的径向基函数神经网络进行了比较.模拟实验表明,支持向量回归方法可以成为非线性系统辨识的有力工具.Abstract: This paper applies Support Vector Regression(SVR) to nonlinear system identification problem. Using the basic idea of Gaussian SVR and -insensitive loss function, we propose a new algorithm for nonlinear system identification and compare the Gaussian SVR with the radial basis function(RBF) network for system identification. The performance of the SVR is illustrated by a simulation example involving a benchmark nonlinear system.