一种适用于低测量噪声系统的粒子滤波算法

邹卫军, 薄煜明, 陈益

邹卫军, 薄煜明, 陈益. 一种适用于低测量噪声系统的粒子滤波算法[J]. 信息与控制, 2010, 39(1): 1-5.
引用本文: 邹卫军, 薄煜明, 陈益. 一种适用于低测量噪声系统的粒子滤波算法[J]. 信息与控制, 2010, 39(1): 1-5.
ZOU Weijun, BO Yuming, CHEN Yi. An Particle Filter Algorithm for the Low Measuring Noise System[J]. INFORMATION AND CONTROL, 2010, 39(1): 1-5.
Citation: ZOU Weijun, BO Yuming, CHEN Yi. An Particle Filter Algorithm for the Low Measuring Noise System[J]. INFORMATION AND CONTROL, 2010, 39(1): 1-5.

一种适用于低测量噪声系统的粒子滤波算法

详细信息
    作者简介:

    邹卫军(1973- ),男,硕博士,助理研究员.研究领域为火力控制,信息融合,图像处理. 
    陈益(1982- ),男,博士生.研究领域为随机控制理论及应用.

    通讯作者:

    邹卫军, harry_cat@163.com

  • 中图分类号: TP14

An Particle Filter Algorithm for the Low Measuring Noise System

  • 摘要: 针对常规粒子滤波算法使用先验密度函数来采样粒子,从而使粒子分布依赖动态模型来降低估计精度的问题,以基于观测量相似函数采样的相似采样粒子滤波为基础,提出一种改进的粒子相关性预采样相似采样粒子滤波算法.在系统测量噪声较小的情况下,利用相似采样获得更加贴近真实后验分布的粒子来提高估计精度;而相关性预采样则通过计算相邻时刻粒子的转移概率并淘汰概率较低的粒子来提高粒子利用效率,在保证估计精度的同时显著降低粒子数量需求.设计了算法的重要性密度函数并推导了权值递推公式.通过蒙特卡洛仿真分析了本文提出的算法.最后通过一个混合坐标系下的目标跟踪实例阐述了算法的应用.
    Abstract: Aiming at the problem that conventional particles filter algorithm uses a prior density function to sample particles,thereby the particles distribution should rely on the dynamic model to reduce the estimation precision.A improved particles correlated pre-sampling likelihood sampling particles filter algorithm is proposed,which based on the likelihood sampling particles filter of observation likelihood function sampling.Under the condition of low measurement noise,the likelihood sampling can obtain particles which are closer to the true posterior distribution,so the estimation precision is expected to be improved.The correlated pre-sampling procedure calculates the transition-probability of adjacent time and abandons the particles with lower probability to improve particles efficiency.By this way,estimation accuracy is ensured and the amount of required particles is decreased significantly.The importance density function is designed and the weight-value recursive formula is deduced.The proposed algorithm is analysised by the Monte Carlo simulation,and it is also applied to the problem of target-tracking in the hybrid coordination.
  • [1] 胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365,371.
    [2] Djuric P M,Kotecha T H,Zhang J Q,et al.Particle filter[J].IEEE Signal Processing Magazine,2003,20(5):19-38.  
    [3] Smith L,Aitken V.Analysis and comparison of the generic and auxiliary particle filtering frameworks[C]//Proceedings of the 2006 Canadian Conference on Electrical and Computer Engineering.Piscataway,N J,USA:IEEE,2006:2124-2127.
    [4] Fan G C,Dai Y P,Wang H Y.Gaussian sum particle filtering based on RBF neural networks[C]//Proceedings of the World Congress on Intelligent Control and Automation.Piscataway,NJ,USA:IEEE,2008:3071-3076.
    [5] 韩崇昭,朱洪艳,段战胜,等.多源信息融合[M].北京:清华人学出版社,2006.
    [6] Van tier Merwe R,Doucet A,De Freitas N,et al.The unscented particle filter[R].Cambridge,UK:Cambridge University,2000.
    [7] 方正,修国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,23(3):273-277.
    [8] 梁军,彭喜元.基r观测相似性粒子滤波的纯角度目标跟踪[J].电子测罩与仪器学报,2009,23(2):10-14.
    [9] Arulampalam M S,Maskeil S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.  
计量
  • 文章访问数:  1813
  • HTML全文浏览量:  0
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-14
  • 发布日期:  2010-02-19

目录

    /

    返回文章
    返回
    x