非奇异快速的终端滑模控制方法

李升波, 李克强, 王建强, 高锋

李升波, 李克强, 王建强, 高锋. 非奇异快速的终端滑模控制方法[J]. 信息与控制, 2009, 38(1): 1-8.
引用本文: 李升波, 李克强, 王建强, 高锋. 非奇异快速的终端滑模控制方法[J]. 信息与控制, 2009, 38(1): 1-8.
LI Sheng-bo, LI Ke-qiang, WANG Jian-qiang, GAO Feng. Nonsingular and Fast Terminal Sliding Mode Control Method[J]. INFORMATION AND CONTROL, 2009, 38(1): 1-8.
Citation: LI Sheng-bo, LI Ke-qiang, WANG Jian-qiang, GAO Feng. Nonsingular and Fast Terminal Sliding Mode Control Method[J]. INFORMATION AND CONTROL, 2009, 38(1): 1-8.

非奇异快速的终端滑模控制方法

详细信息
    作者简介:

    李升波(1982- ),男,博士生.研究领域为驾驶员辅助系统,车辆动力学与控制.
    李克强(1963- ),男,教授.研究领域为智能交通系统,HEV控制和车辆噪声分析及控制.
    王建强(1972- ),男,副教授.研究领域为驾驶员辅助系统,车辆主动安全.

  • 中图分类号: TP13

Nonsingular and Fast Terminal Sliding Mode Control Method

  • 摘要: 针对已有终端滑模控制的奇异和收敛缓慢问题,提出一种非奇异快速终端滑模函数,并利用李亚普诺夫方法证明其有限时间收敛特性.在此基础上,结合带负指数项的吸引子来设计控制律,使控制输入实现时间连续,并保证滑模面全局存在.理论分析表明,通过合理选择控制参数,可使系统避免“收敛停滞”,且对有界模型误差和外部干扰具有较好鲁棒性.
    Abstract: Aiming at the singularity and slow-convergence problem of the existing terminal sliding mode(TSM) control, this paper proposes a nonsingular and fast terminal sliding function and proves its finite-time convergence property with Lyapunov method.On this basis,the control law is synthesized by employing an attractor with negative exponential factor to guarantee the time-continuous control input and global existence of the sliding mode.Theoretical analysis indicates that by selecting the control parameters properly,convergence stagnation of the closed system can be avoided and a preferable robustness can be obtained when the model error and the external disturbance are bounded.
  • [1] Venkataraman S T,Gulati S.Terminal sliding modes:A new approach to nonlinear control synthesis[A].Proceedings of the International Conference on Advanced Robotics[C].Piscataway,NJ,USA:IEEE,1991.443~448. [2] 庄开宇,张克勤,苏宏业,等.高阶非线性系统的Terminal滑模控制[J].浙江大学学报(工学版),2002,36(5):482~485,539. [3] Man Z H,Yu X H.Terminal sliding mode control of MIMO linear systems[A].Proceedings of the IEEE Conference on Decision and Control[C].Piscataway,NJ,USA:IEEE,1996.4619~4624. [4] Yu X H,Man Z H,Wu Y Q.Terminal sliding modes with fast transient performance[A].Proceedings of the IEEE Conference on Decision and Control[C].Piscataway,NJ,USA:IEEE,1997.962~963. [5] Yu S H,Yu X H,Man Z H.Robust global terminal sliding mode control of SISO nonlinear uncertain systems[A].Proceedings of the IEEE Conference on Decision and Control[C].Piscataway,NJ,USA:IEEE,2000.2198~2203. [6] 冯勇,鲍晟,余星火.非奇异终端滑模控制系统的设计方法[J].控制与决策,2002,17(2):194~198. [7] Feng Y,Yu X H,Man Z H.Non-singular terminal sliding mode control and its application for robot manipulators[A].Proceedings of the IEEE International Symposium on Circuits and Systems[C].Piscataway,N J,USA:IEEE,2001.545~548. [8] 张达科,胡跃明,胡战虎.低抖振非奇异终端滑模控制[J].广东工业大学学报,2007,24(3):32~36. [9] 田宏奇.滑模控制理论及其应用[M].武汉:武汉出版社,1995. [10] 刘金琨.滑模变结构控制Matlab仿真[M].北京:清华大学出版社,2005. [11] 刘志旺.数学物理方程和特殊函数[M].成都:成都电讯工程学院出版社,1988. [12] Abramowitz M,Stegun I A.Handbook of Mathematical Functions[M].New York,USA:Dover Publications,1972. [13] 同济大学数学教研室.高等数学(第四版)[M].北京:高等教育出版社,1996.
计量
  • 文章访问数:  1578
  • HTML全文浏览量:  29
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-02-20
  • 发布日期:  2009-02-19

目录

    /

    返回文章
    返回
    x