T-S模糊模型建模方法研究

刘湘崇, 梁彦, 潘泉, 程咏梅, 张洪才

刘湘崇, 梁彦, 潘泉, 程咏梅, 张洪才. T-S模糊模型建模方法研究[J]. 信息与控制, 2006, 35(1): 6-11.
引用本文: 刘湘崇, 梁彦, 潘泉, 程咏梅, 张洪才. T-S模糊模型建模方法研究[J]. 信息与控制, 2006, 35(1): 6-11.
LIU Xiang-chong, LIANG Yan, PAN Quan, CHENG Yong-mei, ZHANG Hong-cai. An Approach for Building Takagi-Sugeno Fuzzy Models[J]. INFORMATION AND CONTROL, 2006, 35(1): 6-11.
Citation: LIU Xiang-chong, LIANG Yan, PAN Quan, CHENG Yong-mei, ZHANG Hong-cai. An Approach for Building Takagi-Sugeno Fuzzy Models[J]. INFORMATION AND CONTROL, 2006, 35(1): 6-11.

T-S模糊模型建模方法研究

基金项目: 国家自然科学基金资助项目(60404011,60372085)
详细信息
    作者简介:

    刘湘崇(1963- ),男,博士生.研究领域为信号处理,控制理论与控制工程等.
    梁彦(1971- ),男,博士,副教授.研究领域为控制与仿真,信息融合等.
    潘泉(1961- ),男,博士,教授.研究领域为信息融合,智能信息处理等.

  • 中图分类号: TP273+.4

An Approach for Building Takagi-Sugeno Fuzzy Models

  • 摘要: 在总结非线性建模经验的基础上,给出了一种建立精确且运行速度快的T-S模型的方法.首先,为了提高运行速度,用聚类的方法减少模糊规则的数目,并确定每个规则中数据的数目.然后,通过回归最小二乘法初步确定T-S模型规则中的状态矩阵的参数.最后,通过梯度下降方法,精确确定T-S模糊模型的所有参数.仿真实例证明了此方法的有效性.
    Abstract: An approach for building accurate and fast running T-S models is proposed based on summarization of the experience of nonlinear modeling.Firstly,the number of fuzzy rules is reduced with clustering algorithm in order to improve the running speed of the model,and the number of data in each rule is determined.Then,the parameters of the state matrixes in the rules of T-S model are determined initially with regressive least squares algorithm.Finally,all of the parameters of the T-S model are determined accurately with gradient descent algorithm.The simulation with a real example shows the effectiveness of the approach.
  • [1] Chen J Q,Xi Y G,Zhang Z J.A clustering algorithm for fuzzy model identification[J].Fuzzy Sets and Systems,1998,98(3):319~329.
    [2] ChuangC C,Hsiao C C,Jeng J T.A novel approach for TSK fuzzy modeling with outliers[A].2003 International Conference on Machine Learning and Cybernetics[C].Piscataway,NJ,USA:IEEE,2003.2158~2163.
    [3] Leng G,Prasad G,McGinnity T M.An on-line algorithm for creating self-organizing fuzzy neural networks[J].Neural Networks,2004,17(10):1477~1493.
    [4] Tsekouras G,Sarimveis H,Kavakli E,et al.A hierarchical fuzzyclustering approach to fuzzy modeling[J].Fuzzy Sets and Systems,2005,150(2):245~266.
    [5] Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Transactions on Systems,Man and Cybernetics,1985,SMC-15(1):116~132.
    [6] Wang L W,Mendel Z Y.Fuzzy basis functions,universal approximation and orthogonal least-squares learning[J].IEEE Transactions on Neural Networks,1992,3(5):807~814.
    [7] Chen J Q,Chen L J.An on-line identification algorithm for fuzzy systems[J].Fuzzy Sets and Systems,1994,64(1):63~72.
计量
  • 文章访问数:  2142
  • HTML全文浏览量:  0
  • PDF下载量:  332
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-03-27
  • 发布日期:  2006-02-19

目录

    /

    返回文章
    返回
    x