通过多种群协进化Memetic算法求解TSP

Solving TSP through Multi-population Co-evolutionary Memetic Algorithm

  • 摘要: 针对对称TSP提出了多种群协进化Memetic算法(MCMA).该算法以Memetic算法为基础,采用3个子种群协同进化的方式,克服了Memetic算法由于缺乏种群多样性而产生早熟收敛的缺陷.MCMA中对3个子种群分别引入了2-exchange、3-exchange和PCV三种不同的邻域搜索结构,非常有效地保持了种群的多样性,并且能快速收敛.文中通过对若干TSPLIB中TSP实例的实验仿真来说明所提算法的性能,并且与SGA、SMA和GGA算法进行了比较.通过仿真实验,该算法能够给出相当满意的结果,从而说明了该算法的有效性.

     

    Abstract: A multi-population co-evolutionary Memetic algorithm(MCMA) for symmetric TSP(traveling salesman problem) is presented.MCMA is devised on the basis of Memetic algorithm(MA) with 3 sub-populations co-evolution,and avoids premature convergence caused by poor population diversity of MAs.In MCMA,three different neighborhood search structures,including 2-exchange,3-exchange and PCV,are introduced for three sub-populations.The strategy effectively preserves the population diversity and converges quickly.Some instances in TSPLIB are shown to demonstrate the capabilities of the proposed algorithm,and some comparisons with other algorithms are made,such as the SGA(standard genetic algorithm),SMAs(simple Memetic algorithms) and GGA(greedy genetic algorithm).Simulation results of the algorithm are satisfactory,which proves the effectiveness of the proposed algorithm.

     

/

返回文章
返回