马尔可夫平稳随机域模型与遥感图象空间邻域结构信息分析

MARKOV RANDOM MESH MODELS FOR CONTEXTUAL INFORMATION ANALYSIS OF REMOTE SENSING IMAGE

  • 摘要: 遥感图象记录的是景物对电磁波的反射与辐射能量及其空间分布信息.对一个象元的判别不仅取决于其光谱值,还取决于该象元的空间位置及与其它象元的关系,即邻域结构关系.本文主要讨论遥感图象空间邻域结构信息分析方法.首先,提出了三种图象平面点阵平稳马尔可夫模型,并论证了相应的计算方法;然后给出了模型中相关参数的最小二乘估计;基于给出的三种模型,我们采用联合概率密度函数作为准则函数,并利用递归分类方法逐步改善近邻类别知识,从而改善邻域结构分类结果.试验证明了所提出的三种模型的有效性.

     

    Abstract: There exist the spectral information and the spatial distribution and structure information in a remote sensing image.To discriminate a pixel we should consider not only its spectral value but also its spatial structure and relation between the pixel and other pixels,that is,the contextual information.This paper is about the remote sensing image analysis using spatial contextual information.Three Markov random mesh models are presented,and the computational methods for the models are given and proved.A Least Square Estimate for correlation parameters of the models is discussed.Using these models we take the joint probability function as the decision function,and use recursive iteration to gradually improve the knowledge of the neighboring classes,and therefore improve the contextual classification results.Experimental results show the effectiveness of the models presented.

     

/

返回文章
返回