岭参数优化的ELM岭回归学习算法

王改堂, 李平, 苏成利

王改堂, 李平, 苏成利. 岭参数优化的ELM岭回归学习算法[J]. 信息与控制, 2011, 40(4): 497-500,506.
引用本文: 王改堂, 李平, 苏成利. 岭参数优化的ELM岭回归学习算法[J]. 信息与控制, 2011, 40(4): 497-500,506.
WANG Gaitang, LI Ping, SU Chengli. ELM Ridge Regression Learning Algorithm of Ridge Parameter Optimization[J]. INFORMATION AND CONTROL, 2011, 40(4): 497-500,506.
Citation: WANG Gaitang, LI Ping, SU Chengli. ELM Ridge Regression Learning Algorithm of Ridge Parameter Optimization[J]. INFORMATION AND CONTROL, 2011, 40(4): 497-500,506.

岭参数优化的ELM岭回归学习算法

基金项目: 国家863计划资助项目(2007AA04Z162);辽宁省高等学校优秀人才支持计划资助项目(2008RC32);辽宁省高校创新团队支持计划资助项目(2007T103,2009T062);辽宁省教育厅科技计划资助项目(2008386)
详细信息
    作者简介:

    王改堂(1980- ),男,博士生.研究领域为软测量建模,过程优化控制.
    李平(1964- ),男,教授,博士生导师.研究领域为软测量建模,预测控制,过程优化控制.
    苏成利(1977- ),男,博士,副教授.研究领域为预测控制,过程优化控制.

    通讯作者:

    王改堂, wgt0104@163.com

  • 中图分类号: TP181

ELM Ridge Regression Learning Algorithm of Ridge Parameter Optimization

  • 摘要: 针对ELM(extreme learning machine,极限学习机)学习算法可能存在的解的奇异问题,提出了岭参数优化的ELM岭回归学习算法(ELMRR).该算法利用岭回归方法代替原有的线性回归算法,以均方根误差为性能指标,采用粒子群优化算法确定最佳岭参数.为了验证该方法的有效性,对函数回归和分类问题进行仿真实验分析,结果表明该方法改善了ELM的预测性能且克服了传统岭回归算法岭参数难以确定的缺点.
    Abstract: Extreme learning machine ridge regression(ELMRR) learning algorithm of ridge parameter optimization is proposed to solve the problem that oddity solution possibly exists in ELM learning algorithm.The algorithm makes use of ridge regression instead of the previous linear regression,and uses particle swarm optimization algorithm to optimize ridge parameter according to root mean square error(RMSE).Simulation experiment is performed for analyzing function regression and classification,and the effectiveness of this method is validated.The experimental results show that the algorithm improves predictive performance of ELM and overcomes the main flaw that it is difficult to obtain the ridge parameter in traditional ridge regression.
  • [1] Huang G B,Zhu Q Y,Siew C H.Extreme learning machine:Theory and applications[J].Neurocomputing,2006,70(1/2/3):489-501.
    [2] 常玉清,李玉朝,王福利,等.基于极限学习机的生化过程软测量建模[J].系统仿真学报,2007,19(23):5587-5590.Chang Y Q,Li Y C,Wang F L,et al.Soft sensing modeling based on extreme learning machine for biochemical processes[J].Journal of System Simulation,2007,19(23):5587-5590.
    [3] Nizar A H,Dong Z Y,Wang Y.Power utility nontechnical loss analysis with extreme learning machine method[J].IEEE Transactions on Power Systems,2008,23(3):946-955.  
    [4] Sun Z L,Choi T M,Au K F,et al.Sales forecasting using extreme learning machine with applications in fashion retailing[J].Decision Support Systems,2008,46(1):411-419.  
    [5] Liang N Y,Huang G B,Saratchandran P,et al.A fast and accurate online sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks,2006,17(6):1411-1423.  
    [6] Forrester J B,Kalivas J H.Ridge regression optimization using a harmonious approach[J].Journal of Chemometrics,2004,18(7/8):372-384.
    [7] 史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-262.Shi Z W,Han M.Ridge regression learning in ESN for chaotic time series prediction[J].Control and Decision,2007,22(3):258-262.
    [8] 颜学峰.优化岭参数的非线性岭同归及4-CBA含量软测量[J].智能系统学报,2006,1(1):74-81.Yan X F.Modified nonlinear ridge regression with optimal ridge parameter and its application to 4-CBA soft sensor[J].CAAI Transactions on Intelligent Systems,2006,1(1):74-81.
    [9] 王振杰,欧吉坤.用L-曲线法确定岭估计中的岭参数[J].武汉大学学报:信息科学版,2004,29(3):235-238.Wang Z J,Ou J K.Determining the ridge parameter in a ridge estimation using L-curve method[J].Geomatics and Information Science of Wuhan University,2004,29(3):235-238.
    [10] 张会战,独知行.斜率法确定岭参数[J].测绘科学,2008,33(2):31-32.Zhang H Z,Du Z X.The slope method of ridge parameter determination[J].Science of Surveying and Mapping,2008,33(2):31-32.
    [11] Kennedy J,Eberhert R.Particle swarm optimization[C]//IEEE International Conference on Neural Networks:vol.4.Piscataway,NJ,USA:IEEE,1995:192-194.
    [12] Rasmussen C E,Williams C K I.Gaussian processes for machine learning[M].Cambridge,MA,USA:MIT Press,2006.
    [13] Rasmussen C E,Williams C K I.Gaussian processes for machine learning[M/OL].(2009-05-23)[2010-04-18].http://www.gaussianprocess.org/gpml.
    [14] Huang G B.Extreme learning machines[DB/OL].(2006-03-16)[2010-0M-18].http://www3.ntu.edu.sg/home/egbhuang/ELM _Codes.htm.
计量
  • 文章访问数:  2275
  • HTML全文浏览量:  3
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-04
  • 发布日期:  2011-08-19

目录

    /

    返回文章
    返回
    x