非最小相位区间系统鲁棒稳定补偿器

林岩, 韩永生

林岩, 韩永生. 非最小相位区间系统鲁棒稳定补偿器[J]. 信息与控制, 1996, 25(1): 8-15.
引用本文: 林岩, 韩永生. 非最小相位区间系统鲁棒稳定补偿器[J]. 信息与控制, 1996, 25(1): 8-15.
LIN Yan, HAN Yongsheng. ROBUST STABILITY FOR NONMINIMUM PHASE INTERVAL PLANTS[J]. INFORMATION AND CONTROL, 1996, 25(1): 8-15.
Citation: LIN Yan, HAN Yongsheng. ROBUST STABILITY FOR NONMINIMUM PHASE INTERVAL PLANTS[J]. INFORMATION AND CONTROL, 1996, 25(1): 8-15.

非最小相位区间系统鲁棒稳定补偿器

详细信息
    作者简介:

    林岩,男,40岁,硕士,讲师.研究领域为控制系统的鲁棒稳定性,系统设计中的计算方法,经济系统的最优控制.
    林永生.男39岁.硕士,高工.研究领域为系统CAD,液压伺服系统.

ROBUST STABILITY FOR NONMINIMUM PHASE INTERVAL PLANTS

  • 摘要: 研究了非最小相位区间系统鲁棒稳定补偿器的设计问题,得到了一个补偿器存在的充分条件,并利用保形映射及Nevanlinna-Pick插值定理提出了一个可行的补偿器设计方法.
    Abstract: This paper considers the robust stability of nonminimum phase interval plants.A sufficient condition for the existence of robust compensators has been derived.The structure and parameter of the robust compensators can be obtained from the corresponding Nevanlinna-Pick interpolation problems.
  • [1] Chappellat H, Bhattacharyya S P. A Generalization of Kharitonov's Theorem, Robust Stability of Interval Plants.IEEE Trans Automat Contr, 1989. AC-34(3):306-311
    [2] Ghosh B K. A New Approach to Simultaneous System Design, Part,:Non-Switching Gain and Dynamic Feedback Compensation by Algebraic Geometric Methods. SIAM Contr and Optimizations, 1988, 26(4):919-963
    [3] Keel L H, Bhattacharyya S P. Control System Design for Parametric Uncertainty. Int J of Robust and Nonlinear Controt, 1994. 4:87-100
    [4] Delsarte P H, et al. On the Role of the Nevanlinna-Pick Problem in Circuit and System Theory. Circuit Theory and Applications, 1981,9, 177-187
    [5] Kharitonov V L. Asymptotic Stability of an Equilibrium Position of a Family of Systems of Linear Differential Equations.Difierentcial'nyeUravenija,1978,14(5):2086-2088
    [6] Frazer R A, Duncan W J. On the Criteria for Stability for Small Motions. Proc Roy Soc London, Ser, 1929, A124: 642-654
    [7] Wei K, Bermiah B R. Making a Polynomial Hurwitz Invariant by Choice of Feedbock Gains. Int J Control, 1989, SO(4):1025-1038
    [8] Khargonekar, et al. Non-Euclidian Metrics and the Robust Stabilization of Systems with Parameter Uncertainty. IEEE Trans Automat Contr. 1985, AC-30(10):1005-1013
    [9] 南航,西工大,北航合编.自动控制原理(上册).北京:国防工出版社,1990
    [10] Fu M. Computing the Frequency Response of Linear Systems with Parameter Perturbation. Syet and Contr Letters,1990, 15,45-52
    [11] 林岩.多个系统同时称定:一种映射方法.信息与控制,1995,24(6)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  0
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  1994-08-14
  • 发布日期:  1996-02-19

目录

    /

    返回文章
    返回
    x