一类未知多变量非线性系统的动态神经网络自适应控制

ADAPTIVE CONTROL OF A CLASS OF UNKNOWN MULTIVARIABLE NONLINEAR SYSTEM BASED ON DYNAMICAL NEURAL NETWORKS

  • 摘要: 对一类未知的非线性多变量系统,提出了用动态神经网络实现直接自适应控制的策略.基于Lyapunov理论,获得一个稳定并且连续的学习律,避免了递归训练过程.闭环系统被证明是鲁棒稳定的,跟踪误差收敛到一个小的残集.这种方法的特点是即不需要离线学习阶段也不要求初始的参数误差足够小.仿真结果验证了提出的动态网络的自适应控制算法的有效性.

     

    Abstract: In this paper a direct adaptive tracking control scheme for a class of unknown multivariable nonlinear system with modeling errors using dynamical neural networks is presented. A stable weight learning algorithm is determined using Lyapunov theory, avoiding iterative training procedures. The feature of this approach is that neither off-line learning phase-nor initial parameter errors small enough are needed. The robust stability of the closed-loop system is proved, with the tracking error being proportional to the magnitude of the modeling error. Simulation results are given to verify the effectiveness of the newly proposed dynamical neural networks-based adaptive control algorithm.

     

/

返回文章
返回