一类非线性系统的稳定神经网络自适应控制

STABLE ADAPTIVE CONTROL FOR NONLINEAR SYSTEMS

  • 摘要: 利用神经网络作为非线性系统的模型,研究了一类非线性系统的神经网络自适应控制问题,设计出的自适应控制器具有如下的特点:(1)网络权值是基于参考误差信号学习的投影算法来调节,这样可保证权值的有界性;(2)为了减小神经网络参数估计误差对跟踪误差的影响,提出了根据参考误差信号实时修正神经网络输入的方法.仿真结果对该控制方案进行了验证.

     

    Abstract: This paper investigates the adaptive neural network control for a class of nonlinear systems. In order to improve the tracking performance, a new control scheme is proposed in this paper, which has the following characteristics:(1) The projection algorithm is used in the updating law of the weights to guarantee the boundedness of weights. (2) The inputs of the neural networks are modified by the reference error in order to compensate for the inherent network approximation errors. Simulation results are provided to demonstrate the effectiveness of the control methods.

     

/

返回文章
返回