线性离散系统稳定化控制器的统一代数刻划

王子栋, 郭治

王子栋, 郭治. 线性离散系统稳定化控制器的统一代数刻划[J]. 信息与控制, 1995, 24(3): 157-161,166.
引用本文: 王子栋, 郭治. 线性离散系统稳定化控制器的统一代数刻划[J]. 信息与控制, 1995, 24(3): 157-161,166.
WANG Zidong, GUO Zhi. A UNIFIED ALGEBRAIC PARAMETERIZATION OF STABILIZING CONTROLLERS FOR LINEAR DISCRETE-TIME SYSTEMS[J]. INFORMATION AND CONTROL, 1995, 24(3): 157-161,166.
Citation: WANG Zidong, GUO Zhi. A UNIFIED ALGEBRAIC PARAMETERIZATION OF STABILIZING CONTROLLERS FOR LINEAR DISCRETE-TIME SYSTEMS[J]. INFORMATION AND CONTROL, 1995, 24(3): 157-161,166.

线性离散系统稳定化控制器的统一代数刻划

基金项目: 高等学校博士学科点专顶科研基金;国防科工委预研基金
详细信息
    作者简介:

    王子栋,男,29岁,博士,副教授.研究方向为线性及非线性控制系统综合设计的时域方法.
    郭治,男,58岁,教授,博士生导师.研究领域为滤波随机控制,兵器火力控制.

A UNIFIED ALGEBRAIC PARAMETERIZATION OF STABILIZING CONTROLLERS FOR LINEAR DISCRETE-TIME SYSTEMS

  • 摘要: 本文研究稳定离散控制系统的代数结构问题,即期望给出线性离散系统稳定化状态反馈控制器的统一代数刻划,本文结果对离散状态反馈控制系统的设计具有理论指导意义,同时也提供了线性稳定系统结构分析的一种新方法.
    Abstract: This paper studies the algebraic structures of stable discrete-time control systems,The purpose of this study is to get the unified algebraic parameterization of stabilizing state feedback controllers forlinear discrete-time systems. The results of this paper give not only the fundamental guidlines to design discrete-time state feedback control systems but also a new approach to structure analysis of linear stable systems.
  • [1] Brockett R W. Some Geometric Questions in the Theory of Linear Systems. IEEE Trans Automat Contr, 1976, 21:449-455.
    [2] Delchamps D F. Global Structure of Families of Multivariable Linear Systems with an Application to Identification. Math Syst Theory. 1985, 18, 329-380.
    [3] Ober R J. Topology of the Set of Asymptotically Stable Minimal Systems. Int 1 Contr, 1987, 46(1):263-280.
    [4] Amari S. Differential Geometry of a Parametric Family of Invertible Linear Systems-Riemannian Metric. Dual Affine Connections, and Divergence. Math Syst Theory. 1987, 20: 53-82.
    [5] Vidyasagar M, Schneider H, Francis B A. Algebraic and Topological Aspects of the Feedback Stabilization. IEEE Trans Automat Contr, 1982. 27(4):880-894.
    [6] EI-Sakkary A K. The Gapmetric:Robustness of Stabilisation of Feedback Syatema. IEEE Trans Automat Contr, 1985,30(3):240-247.
    [7] Ohara A, Kitamori T. Geometric Structures of Stable State Feedback Systems. IEEE Trans Automat Contr. 1993, 38(10):1579-1583.
    [8] Lyapunov A M. Problème Gènèra1 de La Stabilizè du Mouvement (in Frènch). Annals of the Faculty Science Toulouse, 9,203-474.
    [9] Ben-Israel A. Greville T N E. Generalized Inverse, Theory and Application. John Wiley and Sons, Inc, 1974.
    [10] Collins Jr E G, Skelton R E. A Theory of State Covariance Assignment for Discrete Systems. IEEE Trans Automat Contr, 1987. 32(1),35-41.
    [11] Wang Zidong, Chen Xuemin, Guo Zhi. Controller Design for Continuous Systems with Variance and Circular Pole Conatraints. Int J Syat Sci(to Appear).
    [12] Wang Z D, Chen X M, Guo Z. Constrained Variance Design with Pole Assignment. Chinese Journal of Automation, 1994, 20(6).
    [13] Chen X M, Wang Z D, XU G, Guo Z. Eigenstructure Assignment in the Theory of State Covariance Assignment. Syst Contr Lett(Reviaed).
计量
  • 文章访问数:  962
  • HTML全文浏览量:  0
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  1995-01-29
  • 发布日期:  1995-06-19

目录

    /

    返回文章
    返回
    x