基于辨识ARMA模型的野值剔除方法与卡尔曼滤波修正算法

CORRECTION OF KALMAN FILTER IN THE PRESENCE OF OUTLIER

  • 摘要: 本文基于ARMA模型,提出了一种新的野值剔除方法.文中首先建立了新息过程的ARMA模型,再应用递推增广最小二乘方法,在线辨识ARMA模型的多数,并通过模型参数变化的检验函数,来判定是否出现了野值.文中同时提出了野值剔除后卡尔曼滤波的修正算法.作为应用,我们对雷达半主动导引头寻的制导系统的野值情况进行了仿真.仿真结果表明,这种基于辨识ARMA模型的野值剔除方法与野值剔除后的卡尔曼滤波修正算法能有效地剔除传感器的野值,保证滤波的精度和可靠性.

     

    Abstract: In this paper,a new method of detecting outlier in data is proposed.The new method is basedon the identification of ARMA model of system output.The outliers can be detected by a detection function. This method is very sensitive to outlier,so we can do some realtime corrections for Kalman filter.As an example of application,the new method ls applied to the guidance for semi-active radar homing missile. Thesimulation results prove that the outlier can be detected correctly,and the correction of Kalman filter is efficient and practical.

     

/

返回文章
返回