基于反推方法的一类自适应神经网络容错控制

An Adaptive Neural Network Fault-Tolerant Control Using Backstepping

  • 摘要: 针对一类可控标准型基础上添加非线性模型误差与故障项的MIMO非线性系统,结合反推技术,提出了神经网络自适应控制方案,对模型误差与故障项进行在线估计.文中鲁棒项用于补偿逼近模型误差,当检测出系统故障时,通过调整各步骤的虚拟控制量来补偿故障项,消除故障项对系统的影响.通过理论证明实现了提出的控制方法使得各残差信号一致有界,并最终收敛到一个小的邻域内.实例仿真表明该方案的可行性.

     

    Abstract: Aiming at a class of control canonical form MIMO(multi-input multi-output) nonlinear systems which add nonlinear error and fault form,an adaptive control scheme combining backstepping technology for neural network is proposed. The method is used to estimate the model error and fault form on-line.In this paper,the robust term is utilized to compensate approximation model error.When the fault term is detected,the virtual control value is used to compensate the fault form by adjusting every step.The fault term effects on system is eliminated.By theoretical proof,every residual error signal is uniformly bounded,and finally converges to an arbitrarily small neighborhood around zero.Simulation results show the feasibility of the presented approach.

     

/

返回文章
返回