基于稳定裕量的二阶时滞系统PID控制器参数稳定域

Second-order Time Delay System Stable Regions of PID Controller Parameter Based on Stability Margins

  • 摘要: 基于广义Hermite-Biehler定理,由二阶时滞对象的逆Nyquist曲线,可确定PID控制器比例增益的稳定范围;在积分和微分增益平面上,运用一组不等式可确定该二维平面上参数的稳定区域,从而给出了确定二阶时滞系统PID控制器参数稳定域的方法.在此基础上,针对稳定裕量指标,也给出相应的PID控制器稳定域的处理方法.仿真实例验证了该算法的有效性.

     

    Abstract: Based on the generalization of Hermite-Biehler theorem,the stable regions of proportional gain of PID(proportion integration differentiation) controller can be determined by inverse Nyquist curve of second-order object with time delay.The parameter stable regions can be determined by inequalities in the integral and differential gain plane.Thus a new approach is given to determine PID controller parameter stable regions of second-order time delay system.On this basis,for performance of stability margins,the corresponding approach of PID controller parameter stable regions is also given.The simulation examples demonstrate the validity of the proposed approach.

     

/

返回文章
返回