基于局部多核支持向量机的视频镜头边界检测

Video Shot Boundary Detection Based on Localized Multiple Kernel Support Vector Machine

  • 摘要: 提出了一种基于局部多核支持向量机的视频镜头边界检测方法.利用视频图像相邻帧的时空信息构建视频中间特征,在此基础上利用局部多核支持向量机将视频帧划分为边界帧和非边界帧.为了提高基于全局优化的多核支持向量机的检测精度,利用局部敏感哈希算法将视频帧投影至哈希子空间,结合多核学习方法为各个哈希子空间构建局部多核支持向量机,利用SMOTE上采样技术解决了视频图像边界帧和普通帧的不平衡问题.试验结果表明,本文提出的镜头边界检测方法的查全率和查准率得到了提高.

     

    Abstract: Video shot boundary detection approach based on localized multiple kernel support vector machine(L-MKSVM) is proposed.Intermediate features are constructed by integrating local temporal-spatial information of video frames,and then video frames are split into boundary and non-boundary frames with L-MKSVM.In order to improve the detection precision of MKSVM based on global optimization,video frames are projected to Hashing subspace with locality sensitive Hashing(LSH),and then L-MKSVM is constructed for each Hashing subspace with multiple kernel learning methodology.The synthetic minority over-sampling technique(SMOTE) is used to solve the imbalance problem of video boundary frames and non-boundary frames.The experimental results show that the introduced shot boundary detection approach can improve the precision and recall.

     

/

返回文章
返回