基于稀疏电磁矢量传感器阵列的相干目标DOA自适应估计和跟踪

Coherent Sources Adaptive DOA Estimation and Tracking with a Sparse Array of Electromagnetic Vector Sensors

  • 摘要: 研究了利用阵元稀疏分布的电磁矢量传感器阵列对相干目标二维波达方向(DOA)进行自适应估计和跟踪的问题.首先,提出了一种新的解相干预处理方法——极化差分平滑算法(PSDA),并结合传播算子给出一种相干目标DOA的估计方法(PSDA-propagator),无需特征值分解以获得信号/噪声子空间,与基于极化平滑算法(PSA)的同类子空间方法相比,提出的方法在非均匀噪声环境有更好的估计性能.其次,为了实现DOA的自适应估计或对时变DOA的跟踪,论文结合最小均方(LMS)或归一化最小均方(NLMS)算法估计瞬时传播算子,并且通过近似牛顿(approximate Newton)算法更新方位角/仰角的估计.实验结果显示了算法有良好的自适应估计和跟踪性能.

     

    Abstract: The problem of estimating adaptively and tracking two-dimensional direction of arrival(DOA) of coherent sources with a sparsely spaced electromagnetic vector-sensor array is studied.A new pre-processing method called polarization difference smoothing algorithm(PSDA) is firstly proposed to decorrelate sources'coherency,and is coupled with the propagator to estimate the coherent sources'DOA without eigenvalue decomposition into the signal and noise subspaces.The proposed PSDA-propagator can outperform its counterparts based on polarization smoothing algorithm(PSA) in a spatially nonuniform noise environment.In order to estimate adaptively DOA or track the time-varying DOA promptly,the leastmean -square(LMS) or normalized LMS(NLMS) algorithm is combined to estimate the instantaneous propagator,and the approximate Newton method is used to update the azimuths/elevations.Simulation results show that the proposed algorithm has good adaptive estimation and tracking abilities.

     

/

返回文章
返回