含噪声模糊逻辑系统的参数学习算法
Parameter Learning Algorithm of Fuzzy Logic System with Noisy Inputs
-
摘要: 当采用最小方差型的误差成本函数进行输入含噪系统的参数学习时,参数不能收敛至真值,利用包含噪声方差的误差成本函数可解决此问题.本文将此误差成本函数推广到多入单出系统,将之引入到模糊逻辑系统的参数学习中,并且输入输出数据中的噪声方差也通过学习而得到,不必进行多次测量.最后通过仿真对比验证表明了该方法的有效性.Abstract: The parameters can not strongly converge to the true values when using traditional least squares cost function with noisy input data. This problem can be solved by a novel cost function which contains error variables. The cost function is extended to multi input single output system, and the error variables are obtained through learning algorithm to avoid repeated measurement. The simulation results show the efficiency of this algorithm.