基于相似度传播的复杂网络间节点匹配算法

Similarity Propagation Based Node Matching between Complex Networks

  • 摘要: 提出了一种基于相似度传播的复杂网络间节点匹配方法.引入节点相似度传播过程,使得初始的相似度信息能够按网络拓扑结构传播到全局,从而能够充分利用有限数目已匹配节点对所提供的相似度信息.该传播过程的稳态分布与一个大矩阵的主特征向量等价,可采用幂方法的迭代形式来高效求解,最后利用图论中的KM(Kuhn-Munkres)算法来抽取最终的匹配节点对.以四种不同结构的网络节点匹配实验为例,对本文算法进行了测试和验证.实验统计结果表明,本文方法显著提高了节点匹配的精度.

     

    Abstract: A similarity propagation based algorithm is proposed for the node matching problem between complex networks.In order to fully exploit the similarity information provided by the limited numbers of revealed matching node pairs,a node similarity propagation process is introduced,which makes the initial similarity information propagate along the network topology globally.The steady distribution of this propagation process is equivalent to the principle eigenvector of a large matrix,which can be efficiently solved by the power method in an iterative way.The final matching node pairs are extracted by the KM(Kuhn-Munkres) algorithm in graph theory.The proposed method is applied to solving the node matching problems among four different types of networks,respectively.It is revealed that,the proposed algorithm can significantly improve the node matching precision.

     

/

返回文章
返回