粗糙集理论及其应用

韩祯祥, 张琦, 文福拴

韩祯祥, 张琦, 文福拴. 粗糙集理论及其应用[J]. 信息与控制, 1998, 27(1): 37-45.
引用本文: 韩祯祥, 张琦, 文福拴. 粗糙集理论及其应用[J]. 信息与控制, 1998, 27(1): 37-45.
HAN Zhenxiang, ZHANG Qi, WEN Fushuan. ROUGH SETS: THEORY AND APPLICATION[J]. INFORMATION AND CONTROL, 1998, 27(1): 37-45.
Citation: HAN Zhenxiang, ZHANG Qi, WEN Fushuan. ROUGH SETS: THEORY AND APPLICATION[J]. INFORMATION AND CONTROL, 1998, 27(1): 37-45.

粗糙集理论及其应用

基金项目: 国家自然科学基金(5977701)
详细信息
    作者简介:

    韩祯祥,教授.研究领域为人工智能的应用.
    张琦,博士生.研究领域为粗糙集的理论及应用.
    文福拴,副教授.研究领域为软计算方法的理论及应用.

ROUGH SETS: THEORY AND APPLICATION

  • 摘要: 在很多实际系统中均不同程度地存在着不确定性因素,采集到的数据常常包含着噪声、不精确甚至不完整.粗糙集理论是继概率论、模糊集、证据理论之后的又一个处理不确定性的数学工具.作为一种较新的软计算方法,粗糙集近年来越来越受到重视,其有效性已在许多科学与工程领域的成功应用中得到证实,是当前国际上人工智能理论及其应用领域中的研究热点之一.本文介绍了粗糙集理论的基本概念、特点及有关应用.
    Abstract: Rough sets theory is a new mathematical tool to deal with vagueness and uncertainty. Its soundness and usefulness has been proved in many real-life applications. The main problems that can be approached using rough set theory include data reduction, discovery data dependencies, generation of decision (control) algorithms from data, and so on. Hence it is a promising soft computing methodology. In this paper, the basic concepts of the rough sets theory is briefly introduced, and some applications of this theory are also discussed.
  • [1] Zadeh L A, Fuzzy sets, Information and Control, 1965, 8: 338~353
    [2] Shafer G, A Mathematical Theory of Evidence, Princeton University Press, 1976
    [3] Pawlak Z, Rough sets. International Journal of Information and Computer Science, 11, 1982
    [4] Pawlak Z. Rough set: Theoretical Aspects of Reasoning About Data, Dordrecht, The Netherlands;Kluwer Academic Publishers, 1991
    [5] Slowinski R. Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, 1992
    [6] Szladow A, Ziarko Z. Rough Sets;Working with Imperfect Data, AI Expert, July, 1993
    [7] Slowinski R. Rough Set Approach to Decision Analysis, AI Expert, March, 1995
    [8] Pawlak Z, et al. Rough Sets, Communications of ACM, November, 1995
    [9] Zadeh L A, Fuzzy Logic, Neural Networks and Soft Computing, Communications of the ACM, 1994, 37:77~84
    [10] Jelonek J, et al. Rough Set Reduction of Attributes and Their Domains for Neural Networks, Computational Intelligence, 1995, 11(2)
    [11] Plonka L, A. Mrozek, Rule-based Stabilization of the Inverted Pendulum, Computational Intelligence, 1995, 11(2)
    [12] MrozekkA Rough Sets and Dependency Analysis Among Attributes in Computer Implementations of Expert's Inference Models, International of Journal of Man-Machine Studies, 1989, 30;457~473
    [13] Slowinski R, et al. Rough Set Sorting of Firms According to Bankruptcy Risk. In Applying Multiple Criteria Aid for Decision to Environmental Management M. Paruccini, Ed. Klunwer, Dordrecht, Netherlands, 1994: 339~357
    [14] Szladow A, Datalogic /R: Mining the Knowledge in Database. PC AI 1993, 7(1);40~41
    [15] Grzymala-Busse J W, LERS-A System for Learning From Examples Based on Rough Sets. in "Intelligent Decision Support;Handbook of Application and Advances of the Rough Sets theory"edited by R. Slowinski, 1992
    [16] Ziarko W, Variable Precision Rough Sets Model, J. Comput. Syst. Scie, 1993, 46:39~59
计量
  • 文章访问数:  769
  • HTML全文浏览量:  5
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  1997-04-19
  • 发布日期:  1998-02-19

目录

    /

    返回文章
    返回
    x