基于动态神经网络的鲁棒自适应跟踪

ROBUST ADAPTIVE TRACKING BASED ON DYNAMIC DYNAMIC NEURAL NETWORKS

  • 摘要: 研究了一类基于两层动态神经网的仿射型鲁棒自适应跟踪问题.对于未知的仿射非线性系统,提出了新的鲁棒学习算法,该算法不需要知道理想权值的界,用δ-保护解决了文2提出的δ-保护而引起的不连续的问题,从理论上证明了闭环系统的鲁棒稳定性.仿真结果验证了提出的动态网自适应控制算法的有效性.

     

    Abstract: This paper studies robust adaptive tracking for affine nonlinear system based on dynamic neural networks. The learning laws with respect to modeling error for unknown affine systems are proposed using the Lyapunov synthesis approach with the projection modification method which does not require a priori knowledge of norm for ideal weight matrices. The δ projrction and hysteresis technology are used, which is allowed to guarantee the stability of the resulting controller. Simulation results are given to verify the effectiveness of the newly proposed DNN adaptive contral algorithm.

     

/

返回文章
返回