离散系统的环形区域极点配置及约束方差综合控制

孙翔, 王子栋, 郭治

孙翔, 王子栋, 郭治. 离散系统的环形区域极点配置及约束方差综合控制[J]. 信息与控制, 1996, 25(5): 264-270.
引用本文: 孙翔, 王子栋, 郭治. 离散系统的环形区域极点配置及约束方差综合控制[J]. 信息与控制, 1996, 25(5): 264-270.
SUN Xiang, WANG Zidong, GUO Zhi. RING POLE ASSIGNMENT AND VARIANCE CONSTRAINED SYNTHETICAL-CONTROL FOR DISCRETE SYSTEM[J]. INFORMATION AND CONTROL, 1996, 25(5): 264-270.
Citation: SUN Xiang, WANG Zidong, GUO Zhi. RING POLE ASSIGNMENT AND VARIANCE CONSTRAINED SYNTHETICAL-CONTROL FOR DISCRETE SYSTEM[J]. INFORMATION AND CONTROL, 1996, 25(5): 264-270.

离散系统的环形区域极点配置及约束方差综合控制

基金项目: 高校博士点专项基金资助项目
详细信息
    作者简介:

    孙 翔,男,40岁,博士.研究领域为随机系统的多指标综合,非线性时滞控制.
    王子栋,男,30岁,博士,副教授.研究领域为系统建模,随机控制及H∞控制等.
    郭 治,男,58岁,教授,博士生导师,国务院学位委员会学科评仪组成员,中国兵工学会理事.研究领域为随机控制,火力控制及信息融合.

RING POLE ASSIGNMENT AND VARIANCE CONSTRAINED SYNTHETICAL-CONTROL FOR DISCRETE SYSTEM

  • 摘要: 利用广义逆理论和奇异值分解理论,研究离散型线性随机系统的综合控制设计问题.旨在设计期望的控制器,使闭环系统的特征集合定位在单位圆内的一个环形区域之中,且每一个稳态状态方差都符合即定的约束.本文提供一种综合设计方法,使这一类应用广泛的工程控制系统同时具备良好的稳定特性和动态性能.通过研究一个修正的代数Lyapunov矩阵方程,导出控制器存在的充分条件和解集合的表达式,并提供了一个算例.本方法所得的结果具有形式简洁,易于工程实现,设计保守性少的特点.
    Abstract: This paper discusses the synthetical control designing problem for discrete linear stochastic systems with generalized inverse theory and the singular value decomposition theory. The designed controller maked the eigenvalues of the closed-loop system located in a ring of the unit circle, and the variance of each steady state composes to the given constraint. A synthetical designing method is proposed which makes this kind of engineering control system applied generally achieve good dynamic and steady characteristics. This paper derives the existing sufficient and necessary conditions and the expression of solution by a modified algebraic Lyapunov matrix equation, and provides an example. The result is simple, easy for realizing and the designing method has little conservation.
  • 1 Shieh L S,Dib H M,Bayliss C M.Linear Quadratic Regulaters with Eigenvalue Placement in a Vertical Strip.IEEE Trans Automat Control,1986,31(3):241~243
    2 Rousan N S.Constrained Pole Assignment Robustness.A CC/WM 3,1992:590~591
    3 Furuta K,Kim S B.Pole Assignmentin a Specified Disk.IEEE Trans Automat Control,1987,32(5):423~427
    4 Wang Zidong,Chen Xuemin,Guo Zhi.Controller Design for Continuous Systems with Variance and Circular Pole Constraints.Int J Systems Science(to Appear),1994
    5 Kawasaki N,Shimenura E.Determining Quadratic Weighting Matrices to Locate Poles in a Specified Region.Automatica,1983,19(5):557~560
    6 Woodham C A,Zinober A S I.Eigenvalue Placement in a S pecified Sect or for Variable Structure Control Systems.Int J Contr,1993,57(5):1021~1037
    7 Yaz E,Kaufman B,Nanacara W,Azemi A.Extensions of Estimation and Control by Covariance Assignment,A CC/TA 14,1992:1816~1817
    8 Hot a A F,Skelon R E.A Covariance Control Theory.Int J Contr,1987,46(1):13~32
    9 Hsieh C,Skelton R E.All Covariance Controllers for Linear Discrete-Time Systems.IEEE Trans Automa Control,1990,35(8):908~915
    10 Skelton R E,Iwasaki T.Liapunov and Covariance Controllers.Int J Contr,1993,57(3):519~536
    11 Xu J H,Skelton R E.An Improved Covariance Assignment Theory for Discrete Systems.IEEE Trans Automat,Control,1992,37(10)
    12 Ben-Israel A,Grecille T N E.Generalized Inverse:T eory and Application.John Wiley and Sons,Inc,1974
计量
  • 文章访问数:  739
  • HTML全文浏览量:  0
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  1995-08-07
  • 发布日期:  1996-10-19

目录

    /

    返回文章
    返回
    x