一种基于小波分解的非线性系统辨识的新方法

A New Approach of Nonlinear System Identification Based on Wavelet Decomposition

  • 摘要: 提出了一种结合小波理论和NARX模型的新辨识算法.该算法利用小波(多维小波)函数有效的逼近能力避免了通常确定NARX模型结构时的复杂过程,构成了一个相当通用且不依赖于系统先验信息的辨识框架.应用递推最小二乘算法估计模型参数时,该算法可实现系统的在线辨识.两仿真算例说明了这种算法的有效性.

     

    Abstract: A new non-linear system identification approach is proposed, which combines wavelet theory and NARX(non-linear auto-regressive with exogeneous inputs) model properly. The approach utilizes efficient approximation power of wavelet (multi-dimensional wavelet) function to remove the complicated process of model structure determinetion. It constructs a rather general framework of identification without depending on a priori information of the system. The Recursive Least Square (RLS) algorithm can be used to estimate the parameters of the new identification model, which is feasible to realize on-line identification. The results of two simulation examples illustrate effectiveness of the new identification approach.

     

/

返回文章
返回