一种分段线性超混沌同步系统的解析设计

南明凯, 是湘全, 朱志文, 刘中

南明凯, 是湘全, 朱志文, 刘中. 一种分段线性超混沌同步系统的解析设计[J]. 信息与控制, 1999, 28(3): 172-178.
引用本文: 南明凯, 是湘全, 朱志文, 刘中. 一种分段线性超混沌同步系统的解析设计[J]. 信息与控制, 1999, 28(3): 172-178.
NAN Mingkai, SHI Xiangquan, ZHU Zhiwen, LIUZhong. ANALYTICAL DESIGN OF THE SYNCHRONIZED PIECEWISE LINEAR HYPERCHAOTIC SYSTEMS[J]. INFORMATION AND CONTROL, 1999, 28(3): 172-178.
Citation: NAN Mingkai, SHI Xiangquan, ZHU Zhiwen, LIUZhong. ANALYTICAL DESIGN OF THE SYNCHRONIZED PIECEWISE LINEAR HYPERCHAOTIC SYSTEMS[J]. INFORMATION AND CONTROL, 1999, 28(3): 172-178.

一种分段线性超混沌同步系统的解析设计

基金项目: 江苏省自然科学基金;霍英东教育基金
详细信息
    作者简介:

    南明凯,博士生.研究领域为非线性电路与系统、混沌 理论及其在通信领域中的应用.
    是湘全,教授,博士生导师.研究领域为随机信号处理、模式识别、通信及现代雷达系统等领域的工程和理论研究.
    朱志文,博士后.研究领域为非线性电路中的奇异非混沌现象、非线性信号处理.

  • 中图分类号: TP13

ANALYTICAL DESIGN OF THE SYNCHRONIZED PIECEWISE LINEAR HYPERCHAOTIC SYSTEMS

  • 摘要: 针对一种4维分段线性(4D-MPL)超混沌系统进行了同步系统的设计,所采用的线性反馈设计方法本质上是一种基于APD原理的同步系统的构造方法.在设计过程中我们获得了耦合参数和CLE之间的解析关系式,从而可以对同步系统的CLE任意设置.此同步系统可应用于保密通信,解析分析和模拟结果都证明了该同步系统的优越性.
    Abstract: We design a unidirectional coupling between two hyperchaotic circuits named 4D manifold piecewise linear hyperchaos generator (4D-MPL). The linear feedback scheme we adopt here to construct hyperchaotic synchronized systems can be considered as a special case of active-passive decomposition (APD). In our design, the relation between the coupling parameters and the CLEs is obtained analytically, and thus it is very convenient to set any desired negative numbers as the CLEs, which will lead to stable synchronous motion according to the APD mechanism. In regard to its application to secure communication, several advantages are testified by numerical simulation together with corresponding theoretical explanation.
  • 1 Louis M. Pecora and Thomas L. Carrol, Synchronization in Chaotic Systems, Physical Review Letters, 1990,64(8):821~824
    2 Kocarev L, Parlitz U. Encode Message Using Chaotic Synchronization, Physical Review E, 1996,53(5):4351~4361
    3 Perez G, Cerdeira H A. Extracting Messages Masked by Chaos, Physical Review Letters, 1995, 74(11):1970~1973
    4 Short K M. Steps Toward Unmasking Secure Communications, Int. J. of Bifurcation and Chaos, 1994, 4(5):959~977
    5 Kocarev L, Parlitz U, et al. An Application of Synchronized Chaotic Dynamics Arrays, Physics Letters A, 1996, 217(4,5):280~284
    6 Peng J H,Ding E J, et al. Synchronizing Hyperchaos with a Scalar Transmitted Signal, Physical Review Letters, 1996, 76(6):904~907
    7 Güe mei J, Martin C. Approach to the Chaotic Synchronized State of Some Driving Methods, Physical Review E, 1997, 55(1):124~134
    8 Eckmann J -p, Ruelle D. Ergodic Theory of Chaos and Strange Attractors, Reviews of Modern Physics, 1985, 57(3):619~656
    9 Ogata K. Modern Control Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1990:776~786
    10 Tsubone T, Saito T. A 4-D Manifold Piecewise Linear Hyperchaos Generator, ISCAS'97, Hong Kong, 1997, 2,773~776
    11 Sushchik M M, Rolkov Jr N F, Abarbanel H D I. Robustness and Stability of Synchronized Chaos: An Illustrative Model, IEEE TCAS-I, 1997, 44(10):867~873
计量
  • 文章访问数:  1550
  • HTML全文浏览量:  0
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  1998-10-11
  • 发布日期:  1999-06-19

目录

    /

    返回文章
    返回
    x