基于独立分量聚类分析的诱发脑电特征提取技术

Evoked EEG Feature Extraction Technique Based on Independent Component Clustering Analysis

  • 摘要: 发展了一种独立分量聚类分折的诱发脑电特征提取方法,利用诱发成分较强的序问相似性,使用Infomax结合K均值算法对脑电信号中的诱发成分进行分类和提取.该方法可以克服传统独立分量分解方法中诱发分量识别的困难,适用于重复刺激诱发脑电的高维数据自动分析处理.将该方法用于上肢想像动作任务的诱发脑电数据分析,结果显示该方法可以有效剥离背景噪声和提取诱发分量,使得信号的费雪可分性得到显著提升,进而获得更好的识别效果.研究结果表明独立分量自动聚类技术适用于认知行为脑电信号的分析,值得进一步研究.

     

    Abstract: A new method based on independent component clustering analysis(ICCA) for evoked EEG(electroencephalograph) feature extraction is developed,which uses the higher inter trail similarity among evoked components and combines Infomax with K-means algorithm to separate and extract evoked components.This method overcomes the difficulty of evoked component recognition in traditional independent component decomposition methods and shows the advantage in automatic processing on high dimensional(EEG) data evoked by multiple stimuli.Using ICCA analysis on EEG signals during imaginary upper extremity movement,the result shows that ICCA can automatically separate background noise and extract evoked components,thus increases the Fisher separability dramatically and achieves a better recognition performance.This study demonstrates that ICCA is fit for cognitive behavioural EEG signal analysis and is worthy of further research.

     

/

返回文章
返回