刘加存, 梅其祥, 杨东红. 基于盲动粒子群频率分解的极速学习机神经网络建模[J]. 信息与控制, 2017, 46(1): 60-64. DOI: 10.13976/j.cnki.xk.2017.0060
引用本文: 刘加存, 梅其祥, 杨东红. 基于盲动粒子群频率分解的极速学习机神经网络建模[J]. 信息与控制, 2017, 46(1): 60-64. DOI: 10.13976/j.cnki.xk.2017.0060
LIU Jiacun, MEI Qixiang, YANG Donghong. ELM Neural Network Modeling Based on Frequency Decomposition with Blindfold Particle Swarm Optimization[J]. INFORMATION AND CONTROL, 2017, 46(1): 60-64. DOI: 10.13976/j.cnki.xk.2017.0060
Citation: LIU Jiacun, MEI Qixiang, YANG Donghong. ELM Neural Network Modeling Based on Frequency Decomposition with Blindfold Particle Swarm Optimization[J]. INFORMATION AND CONTROL, 2017, 46(1): 60-64. DOI: 10.13976/j.cnki.xk.2017.0060

基于盲动粒子群频率分解的极速学习机神经网络建模

ELM Neural Network Modeling Based on Frequency Decomposition with Blindfold Particle Swarm Optimization

  • 摘要: 为了提高神经网络的泛化性,对输入信号进行频率分解.频率分解相对提升了子频带的信息致密性,覆盖全频域的子频带,也保证了信息的遍历性.高致密性和遍历性有助于提高神经网络的泛化性.频率分解由盲动粒子群优化算法自动完成,粒子群算法和通常的神经网络算法都用迭代计算,但计算需耗费较长时间,而采用一次就完成学习的极速学习神经网络可以节省计算时间.仿真结果表明,该神经网络泛化性好、精度高能满足一般工程应用.

     

    Abstract: In order to improve the generalization of a neural network model, input frequency is divided into sub-bands. These sub-bands enhance information compactness, and those which cover the full frequency ensure ergodicity. Higher compactness and ergodicity help to improve the generalization of the neural network. Frequency decomposition is performed by particle swarm optimization with a blindfold feature. Because particle swarm optimization and the usual neural network algorithm require an iterative calculation, they take a long time for execution. An extreme learning machine neural network with a one-time iteration is time efficient. Simulation results show that the generalization and accuracy of the neural network model are higher and can satisfy the demands of general engineering applications.

     

/

返回文章
返回