李文鹏, 杜玉红, 董广宇. 基于加速度约束的Delta机器人动态可行域时间最优速度规划[J]. 信息与控制, 2024, 53(3): 329-338. DOI: 10.13976/j.cnki.xk.2024.3030
引用本文: 李文鹏, 杜玉红, 董广宇. 基于加速度约束的Delta机器人动态可行域时间最优速度规划[J]. 信息与控制, 2024, 53(3): 329-338. DOI: 10.13976/j.cnki.xk.2024.3030
LI Wenpeng, DU Yuhong, DONG Guangyu. Time-optimal Velocity Planning of Delta Robot Dynamic Feasible Domain Based on Acceleration Constraints[J]. INFORMATION AND CONTROL, 2024, 53(3): 329-338. DOI: 10.13976/j.cnki.xk.2024.3030
Citation: LI Wenpeng, DU Yuhong, DONG Guangyu. Time-optimal Velocity Planning of Delta Robot Dynamic Feasible Domain Based on Acceleration Constraints[J]. INFORMATION AND CONTROL, 2024, 53(3): 329-338. DOI: 10.13976/j.cnki.xk.2024.3030

基于加速度约束的Delta机器人动态可行域时间最优速度规划

Time-optimal Velocity Planning of Delta Robot Dynamic Feasible Domain Based on Acceleration Constraints

  • 摘要: 针对传统的Delta机器人运动控制方法存在工作效率低、稳定性差的问题, 在基于可达性分析的时间最优轨迹规划(TOPP-RA) 的基础上, 提出了一种加速度约束动态可行域速度规划方法, 用以解决机器人关节力矩约束下的时间最优控制。将TOPP-RA的全局网格点速度规划调整为局部网格点动态速度规划; 通过消除Delta机器人动力学模型的偏置力矩, 将力矩约束转化为加速度约束以实现自调整加速度, 最终完成动态可行域速度规划。实验表明, 动态可行域速度规划能够达到全局最优的效果且单次求解仅需0.015 s, 并且通过加速度自调整实现了机器人关节力矩约束下安全稳定高效的时间最优控制。

     

    Abstract: Using a Delta robot in a high-speed transportation environment has the advantages of low working efficiency and poor stability. We propose a dynamic feasible region velocity planning method with acceleration constraints based on time-optimal trajectory planning (TOPP-RA) and reachability analysis to solve time-optimal velocity planning under dynamic constraints. We adjust the global grid point velocity planning of TOPP-RA to the local grid point dynamic velocity planning, eliminate the bias torque of the Delta robot dynamic model, convert the torque constraint into an acceleration constraint, achieve self-adjusting acceleration, and complete the dynamic feasible region velocity planning. Experiments show that dynamic feasible region velocity planning can achieve global optimal results with a single solution of only 0.015 s, and safe, stable, and efficient time-optimal control of the robot under joint torque constraints through acceleration self-adjustment.

     

/

返回文章
返回