基于周期性细粒度纹理生成网络的碳纤维复合材料纹理图像生成

Texture Image Generation for Carbon Fiber-Reinforced Composites Based on Periodic Fine-grained Texture Generation Network

  • 摘要: 针对碳纤维复合材料(Carbon Fiber-Reinforced Composites,CFRCs)铺叠质量检测过程中纹理图像数据量不足的问题,提出了周期性细粒度纹理生成网络模型(Periodic Fine-grained Texture generation Network,PFTN)及具有缺陷转移功能的DT-PFTN (Defect Transfer PFTN)网络。PFTN通过引入细粒度纹理补偿模块与可学习的周期性正弦波模块,来有效平衡纹理图像的随机性与周期性,以保证高质量、细粒度的CFRCs纹理图像生成。在此基础上,DT-PFTN通过缺陷特征的有效编码与嵌入来生成具有真实表面缺陷的纤维纹理图像。通过所提模型构建了CFRCs纹理图像数据集,包括12 480张正常的纹理图像样本和3 000张缺陷纹理图像样本。实验结果表明,PFTN和DT-PFTN模型在无缺陷数据集和缺陷数据集中均取得较好的纹理图像生成效果,SIFID (Single Image Fréchet Inception Distance)(10-6)、LPIPS (Learned Perceptual Image Patch Similarity)和FID (Fréchet Inception Distance)能分别达到9、0.35和60.81。

     

    Abstract: To address the issue of insufficient texture image data during the quality inspection of Carbon Fiber-Reinforced Composites (CFRCs) layup process, we propose a periodic fine-grained texture generation network (PFTN) and a defect transfer PFTN (DT-PFTN) with defect transfer functionality. The PFTN effectively balances the randomness and periodicity of texture images by introducing a fine-grained texture compensation module and a learnable periodic sine wave, ensuring the generation of high-quality, fine-grained CFRCs texture images. The defect transfer network DT-PFTN generates fiber texture images with real surface defects by effectively encoding and embedding defect features. We contruct a CFRCs texture image dataset using the proposed models, including 12 480 normal texture image samples and 3 000 defective texture image samples. Experimental results demonstrate that both the PFTN and DT-PFTN models achieve competitive texture image generation effects on both defect-free and defective datasets, with SIFID (Single Image Fréchet Inception Distance)(10-6), LPIPS (Learned Perceptual Image Patch Similarity), and FID (Fréchet Inception Distance) scores reaching 9, 0.35 and 60.81, respectively.

     

/

返回文章
返回