FU Zhumu, CAO Jing, WANG Xiaohong. Design of Sliding Model Variable Structure Guidance Law with Terminal Impact Angle Constraints[J]. INFORMATION AND CONTROL, 2015, 44(3): 291-297,302. DOI: 10.13976/j.cnki.xk.2015.0291
Citation: FU Zhumu, CAO Jing, WANG Xiaohong. Design of Sliding Model Variable Structure Guidance Law with Terminal Impact Angle Constraints[J]. INFORMATION AND CONTROL, 2015, 44(3): 291-297,302. DOI: 10.13976/j.cnki.xk.2015.0291

Design of Sliding Model Variable Structure Guidance Law with Terminal Impact Angle Constraints

More Information
  • Received Date: August 11, 2014
  • Revised Date: March 05, 2015
  • Published Date: June 19, 2015
  • To improve guidance precision and to ensure the ideal damage effect, an approximate vertical diving attacking guidance law of air-to-ground weapons is proposed. Based on the relative motion model for a missile and target in a two-dimensional plane, the impact angle constraints are transformed to control the terminal line of sight. According to final the position and the impact angle constraints, a sliding model variable structure guidance law that includes four guidance parameters is designed: the angle error parameter, the switching parameter, the reaching law parameter, and the constant parameter. The basis for the parameters selection is obtained by analyzing the influence of four guidance law parameters on guidance performance. The simulation is demonstrated for the designed guidance law to obtain a near zero miss distance and a 90° impact angle. The miss distance is decreased by 87.43% and the impact angle is increased by 47.01% in comparison with the proportional guidance law.
  • [1]
    孙未蒙, 刘湘洪, 郑志强. 多约束条件下的制导律研究综述[J]. 飞行力学, 2010, 28(4): 1-4. Sun W M, Liu X H, Zheng Z Q. Survey on the developments on the guidance law with impact angular constraints[J]. Flight Dynamics, 2010, 28(4): 1-4.
    [2]
    蔡洪, 胡正东, 曹渊. 具有终端角度约束的导引律综述[J]. 宇航学报, 2010, 31(2): 315-332. Cai H, Hu Z D, Cao Y. A survey of guidance law with terminal impact angle constraints[J]. Journal of Astronautics, 2010, 31(2): 315-332.
    [3]
    水尊师, 周军, 葛致磊, 等. 基于预测控制的角度约束制导律设计[J]. 飞行力学, 2011, 29(3): 56-59. Shui Z S, Zhou J, Ge Z L, et al. Guidance with impact angle constraint based on predictive control[J]. Flight Dynamics, 2011, 29(3): 56-59.
    [4]
    Rantnoo A, Ghose D. State dependent Riccati equation based guidance law for impact angle constrained trajectories[J]. Journal of Guidance, Control and Dynamics, 2009, 32(1): 320-325.
    [5]
    张运喜, 孙明玮, 陈增强. 滑模变结构有限时间收敛制导律[J]. 控制理论与应用, 2012, 29(11): 1413-1418. Zhang Y X, Sun M W, Chen Z Q. Sliding-mode variable structure finite-time convergence guidance law[J]. Control Theory and Applications, 2012, 29(11): 1413-1418.
    [6]
    马飞, 曹泽阳, 刘晖. 基于主从递阶决策模型的地空导弹混编群火力运用策略[J]. 信息与控制, 2010, 39(6): 755-760. Ma F, Cao Z Y, Liu H. Firing application strategies of ground-to-air missile composite group based on stackelberg decision model[J]. Information and Control, 2010, 39(6): 755-760.
    [7]
    Lee J, Min B M, Min J T. Suboptimal guidance laws with terminal jerk constraint[C]//International Conference on Control, Automation and Systems. Piscataway, NJ, USA: IEEE, 2007: 1399-1403.
    [8]
    Ryoo C K, Cho H J, Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dymamics, 2005, 28(4): 724-732.
    [9]
    Jeon I S, Lee J I, Tahk M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-267.
    [10]
    Chen R H, Speyer J L, Lianos D. Optimal intercept missile guidance strategies with autopilot lag[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1264-1272.
    [11]
    刘晓东, 吴云洁, 张武龙, 等. 导弹电动舵机系统离散自适应全程滑模控制[J]. 信息与控制, 2013, 42(4): 449-456. Liu X D, Wu Y J, Zhang W, et al. Discrete adaptive global sliding mode control for missile electromechanical actuator system[J]. Information and Control, 2013, 42(4): 449-456.
    [12]
    陈兴林, 花文化. 具有终端约束的地面目标拦截比例导引[J]. 弹道学报, 2010, 22(2): 15-18. Chen X L, Hua W H. Ground target interception proportional navigation law with terminal constraints[J]. Journal of Ballistics, 2010, 22(2): 15-18.
    [13]
    Ryoo C K, Cho H J, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3): 483-492.
    [14]
    Song J M, Zhang T Q. Passive homing missile's variable structure proportional navigation with terminal angular constraint[J]. Chinese Journal of Aeronautics, 2001, 14(2): 83-87.
    [15]
    于进勇, 唐大全, 顾文锦. 基于变结构控制理论的航向平面导引规律设计[J]. 飞行力学, 2005, 23(1): 50-53. Yu J Y, Tang D Q, Gu W J. Yaw plane guidance law design based on variable structure control theory[J]. Flight Dynamics, 2005, 23(1): 50-53.
    [16]
    Jung B, Kim Y.Guidance laws for anti-ship missile using impact angle and impact time[C]//AIAA Guidance, Navigation, and Control Conference.Keystone, CO, USA: AIAA, 2006: 3048-3060.
    [17]
    Koray S E, Osman M.Indirect impact angle control against stationary targets using biased pure proportional navigation[J].Journal of Guidance, Control and Dynamics, 2012, 35(2): 700-704.
    [18]
    Kim B S, Lee J G, Han H S.Biased PNG law for impact with angular constraint[J].IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-287.
    [19]
    朱国栋, 林辉, 王琛.LS-SVM在线误差补偿的导弹自适应逆控制律设计[J].东南大学学报: 自然科学版, 2012, 42(S1): 15-19.Zhu G D, Lin H, Wang C.Adaptive inverse control law design of missile based on LS-SVM online error compensation[J].Journal of Southeast University: Natural Science Edition, 2012, 42(S1): 15-19.
    [20]
    周荻.寻的导弹新型导引规律[M].北京: 国防工业出版社, 2002.Zhou D.New guidance laws for homing missiles[M].Beijing: National Defense Industry Press, 2002.

Catalog

    Article views (951) PDF downloads (322) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return