JIANG Li, XUE Xingsi. Ontology Matching Technology Based on Local Standard Ontology Alignment[J]. INFORMATION AND CONTROL, 2016, 45(1): 66-72. DOI: 10.13976/j.cnki.xk.2016.0066
Citation: JIANG Li, XUE Xingsi. Ontology Matching Technology Based on Local Standard Ontology Alignment[J]. INFORMATION AND CONTROL, 2016, 45(1): 66-72. DOI: 10.13976/j.cnki.xk.2016.0066

Ontology Matching Technology Based on Local Standard Ontology Alignment

More Information
  • Received Date: February 04, 2015
  • Revised Date: August 17, 2015
  • Available Online: December 07, 2022
  • Published Date: February 19, 2016
  • To overcome the drawback that an entire standard ontology alignment must be provided beforehand in current evolutionary-algorithm-based ontology matching technologies, we propose an ontology matching approachbased on local standard ontology alignment. First, we utilize the ontology concept of the clustering algorithm to build the local standard ontology alignment, and then construct a multi-object optimization model for the ontology matching problem based on the local standard ontology alignment. Then, we propose a multiobjective evolutionary algorithm based on decomposition (MOEA/D) that is also based on the local standard ontology alignment. We conducted an experiment using a testing dataset from the ontology alignment evaluation initiative 2012, and the results demonstrate the effectiveness of the proposed approach.
  • [1]
    Noy N F, Musen M A. Algorithm and tool for automated ontology merging and alignment[C]//Proceedings of the 17th National Conference on Artificial Intelligence. Canada: Stanford University, 2000: 1-6.
    [2]
    Madhavan J, Bernstein P A, Rahm E. Generic schema matching with cupid[C]///Proceedings of the 27th International Conference on VLDB. Berlin, Germany: Springer, 2001: 49-58.
    [3]
    Noessner J, Niepert M. Codi: Combinatorial optimization for data integration-results for OAEI 2010[C]//Proceedings of the 27th ISWC 2010. Berlin, Germany: Springer, 2010: 142.
    [4]
    Chua W W K, Kim J J. Eff2Match results for OAEI 2010[C]//Proceedings of the ISWC 2010. Berlin, Germany: Springer, 2010: 150.
    [5]
    Wang Z C, Zhang X, Hou L, et al. RiMOM results for OAEI 2010[C]//Proceedings of the ISWC 2010. Berlin, Germany: Springer, 2010: 195.
    [6]
    Jean-Mary Y R, Shironoshita E P, Kabuka M R. Ontology matching with semantic verification[J]. Journal of Web Semantics, 2009, 7(3): 235-251.
    [7]
    Gracia J, Bernad J, Mena E. Ontology matching with CIDER: Evaluation report for OAEI 2011[C]//Proceedings of the 6th International Workshop on Ontology matching. Berlin, Germany: Springer, 2011: 126.
    [8]
    Hughes T C, Ashpole B C. The semantics of ontology alignment[R]. USA: Lockheed Martin Advanced Technology Lab, 2004.
    [9]
    Back T. Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming, genetic algorithms[M]. Oxford, UK: Oxford University, 1996.
    [10]
    Holland J H. Adaptation in natural and artificial systems[M]. USA: University of Michigan, 1975.
    [11]
    Do H H, Rahm E. Matching large schemas: Approaches and evaluation[J]. Information Systems, 2007, 32(6): 857-885.
    [12]
    Hu W, Qu Y Z, Cheng G. Matching large ontologies: A divide-and-conquer approach[J]. Data and Knowledge Engineering, 2008, 67(1): 140-160.
    [13]
    Wang P, Xu B W. Lily: Ontology Alignment Results for OAEI 2008[C]//Proceedings of the 3rd International Workshop on Ontology Matching. Berlin, Germany: Springer, 2008: 167-175.
    [14]
    Kirsten T, Gross A, Hartung M, et al. GOMMA: A component-based infrastructure for managing and analyzing life science ontologies and their evolution[J]. Journal of Biomedical Semantics, 2011, 2(6): 1-8.
    [15]
    Guha S, Rastogi R, Shim K. ROCK: A robust clustering algorithm for categorical attributes[C]//Proceedings of the 15th International Conference on Data Engineering. Piscataway, NJ, USA: IEEE, 1999: 512-521.
    [16]
    Yuruk N, Mete M, Xu X, et al. AHSCAN: Agglomerative hierarchical structural clustering algorithm for networks[C]//International Conference on Advances in Social Network Analysis and Mining. Piscataway, NJ, USA: IEEE, 2009: 72-77.
    [17]
    Zhang Q F, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
    [18]
    Stoilos G, Giorgos S, Stefanos K. A string metric for ontology alignment[C]//The Semantic Web-ISWC 2005. Berlin, Germany: Springer, 2005: 624-637.
    [19]
    Bechikh S, Said L B, Ghédira K. Searching for knee regions of the Pareto front using mobile reference points[J]. Soft Computing, 2011, 15(9): 1807-1823.
    [20]
    Deb K, Gupta S. Towards a link between knee solutions and preferred solution methodologies[M]//Swarm, Evolutionary, and Memetic Computing. Berlin, Germany: Springer, 2010: 182-189.
    [21]
    Fang K T. The uniform design: Application of number-theoretic methods in experimental design[J]. Acta Mathematicae Applicatae Sinica, 1980, 3(4): 363-372.
    [22]
    Wang Y, Fang K T. A note on uniform distribution and experimental design[J]. Science Bulletin, 1981, 26(6): 485-489.
    [23]
    Miller G A. WordNet: A lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
    [24]
    Melnik S, Garcia-Molina H, Rahm E. Similarity flooding: A versatile graph matching algorithm and its application to schema matching[C]//18th International Conference on Data Engineering. Piscataway, NJ, USA: IEEE, 2002: 117-128.
    [25]
    Martinez-gil J, Alba E, Aldana-montes J F. Optimizing ontology alignments by using genetic algorithms[C]//Proceedings of the Workshop on Nature based Reasoning for the Semantic Web. Karlsruhe, Germany: University of Karlsruhe, 2008: 21-45.
  • Related Articles

    [1]GUO Yinan, TANG Wanbao, CHEN Guoyu, GONG Dunwei. Research Progress on Dynamic Multi-objective Evolutionary Optimization[J]. INFORMATION AND CONTROL, 2021, 50(2): 162-173. DOI: 10.13976/j.cnki.xk.2021.0556
    [2]ZOU Binsen, ZHANG Zeqiang, LI Liuke, ZHU Lixia. Multi-objective Disassembly Line Balancing Problem Based on Pareto Improved Cat Swarm Optimization Algorithm[J]. INFORMATION AND CONTROL, 2017, 46(4): 503-512. DOI: 10.13976/j.cnki.xk.2017.0503
    [3]ZHANG Qiang, LI Panchi, LIU Lijie. Multi-objective Optimization of Oilfield Development Plan Based on Quantum-Shuffled Frog-Leaping Algorithm[J]. INFORMATION AND CONTROL, 2014, 43(1): 116-122. DOI: 10.3724/SP.J.1219.2014.00116
    [4]GAO Kun, ZHANG Jianxin, WANG Lin. Comparison and Application of the Intelligent Recombination Operators in Multi-objective Evolutionary Algorithms[J]. INFORMATION AND CONTROL, 2013, 42(6): 677-685. DOI: 10.3724/SP.J.1219.2013.00677
    [5]LI Weigang, JIA Shujin, GUO Zhaohui. A Multi-objective Differential Evolution Algorithm Based on Decomposition and Its Application[J]. INFORMATION AND CONTROL, 2013, 42(3): 392-400. DOI: 10.3724/SP.J.1219.2013.00392
    [6]XU Bo, PENG Zhiping, CHEN Xiaolong, KE Wende, YU Jianping. A Multi-Objective Evolutionary Algorithm Based on Cloud Model[J]. INFORMATION AND CONTROL, 2012, (3): 326-332. DOI: 10.3724/SP.J.1219.2012.00326
    [7]LIU Nannan, SHI Yu, FAN Shenghui. PID Multi-objective Optimization Design Based on Pareto Optimality[J]. INFORMATION AND CONTROL, 2010, 39(4): 387-390,396.
    [8]ZHANG Huajun, ZHAO Jin, WANG Rui. The Evolutionary Multi-Objective Optimization Algorithm with Maximization of Personal Preference[J]. INFORMATION AND CONTROL, 2010, 39(2): 212-217.
    [9]WANG Liping, JIANG Bo, CAI Jianhu, QIU Feiyue. Multi-objective Particle Swarm Optimization Based on Bipolar Preferences Control[J]. INFORMATION AND CONTROL, 2009, 38(6): 711-717.
    [10]SHEN Xiao-ning, GUO Yu, CHEN Qing-wei, HU Wei-li. A Multi-objective Optimization Genetic Algorithm Incorporating Preference Information[J]. INFORMATION AND CONTROL, 2007, 36(6): 746-753.

Catalog

    Article views (812) PDF downloads (427) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return