TAO Taiyang, LIU Yanjun, DING Feng. Gradient Pursuit Identification Algorithm for MISO-FIR Systems[J]. INFORMATION AND CONTROL, 2016, 45(2): 151-156. DOI: 10.13976/j.cnki.xk.2016.0151
Citation: TAO Taiyang, LIU Yanjun, DING Feng. Gradient Pursuit Identification Algorithm for MISO-FIR Systems[J]. INFORMATION AND CONTROL, 2016, 45(2): 151-156. DOI: 10.13976/j.cnki.xk.2016.0151

Gradient Pursuit Identification Algorithm for MISO-FIR Systems

More Information
  • Received Date: May 24, 2015
  • Revised Date: March 01, 2016
  • Available Online: December 07, 2022
  • Published Date: April 19, 2016
  • For multiple-input single-output finite impulse response (MISO-FIR) systems with unknown time delays, we combine the matching pursuit method and the gradient search principle, according to the sparsity of the parameterized model based on the compressed sensing theory, and propose a gradient pursuit algorithm for simultaneously estimating parameters and time delays with limited sampling data. The proposed method reduces the associated computational burden compared with that of the orthogonal matching pursuit algorithm. The simulation results show the effectiveness of the proposed algorithm.
  • [1]
    Ljung L. System identification: Theory for the user[M]. 2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1999.
    [2]
    丁锋. 系统辨识新论[M]. 北京: 科学出版社, 2013: 1-33.

    Ding F. System identification - New theory and methods[M]. Beijing: Science Press, 2013: 1-33.
    [3]
    Unbehauen H, Rao G P. Continuous-time approaches to system identification - A survey[J]. Automatica, 1990, 26(2): 23-25.
    [4]
    王建宏, 王道波, 王志胜. 多个未知时延的MISO系统的递推辨识[J]. 控制与决策, 2010, 25(1): 93-98.

    Wang J H, Wang D B, Wang Z S. Recursive identification of MISO systems with multiple unknown time delays[J]. Control and Decision, 2010, 25(1): 93-98.
    [5]
    Ding F. Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling[J]. Applied Mathematical Modelling, 2013, 37(4): 1694-1704.
    [6]
    Liu Y J, Ding F, Shi Y. An efficient hierarchical identification method for general dual-rate sampled-data systems[J]. Automatica, 2014, 50(3): 962-970.
    [7]
    Ding J, Ding F, Liu X P, et al. Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data[J]. IEEE Transactions on Automatic Control, 2011, 56(11): 2677-2683.
    [8]
    Sanandaji B M, Vincent T L, Wakin M B, et al. Compressive system identification of LTI and LTV ARX models[C]//50th IEEE Conference on Decision and Control and European Control Conference. Piscataway, NJ, USA: IEEE, 2011: 791-798.
    [9]
    Tropp J A. Just relax: Convex programming methods for identifying sparse signals in noise[J]. IEEE Transactions on Information Theory, 2006, 52(3): 1030-1051.
    [10]
    Elad M. Sparse and redundant representations: From theory to applications in signal and image processing[M]. Berlin, Germany: Springer-Verlag, 2010.
    [11]
    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [12]
    Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
    [13]
    Baraniuk R. A lecture on compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
    [14]
    李树涛, 魏丹. 压缩传感综述[J]. 自动化学报, 2009, 35(11): 1369-1377.

    Li S T, Wei D. A survey on compressive sensin[J]. Acta Automatica Sinica, 2009, 35(11): 1369-1377.
    [15]
    石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5): 1070-1081.

    Shi G M, Liu D H, Gao D H, et al. Advances in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070-1081.
    [16]
    Candès E J. Robust uncertainty principles: Extra signal reconstruction from highly frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    [17]
    Candès E J, Romberg J R, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
    [18]
    Haupt J, Bajwa W, Raz G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875.
    [19]
    Tropp J A. Greed is good: Algorithmic results for sparse approximation[J]. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242.
    [20]
    Tth R, Sanandaji B M, Poolla K, et al. Compressive system identification in the linear time-invariant framework[C]//50th IEEE Conference on Decision and Control and European Control Conference. Piscataway, NJ, USA: IEEE, 2011: 783-790.
    [21]
    Xua W Y, Bai E W, Choa M. System identification in the presence of outliers and random noises: A compressed sensing approach[J]. Automatica, 50(11): 2905-2911.
    [22]
    Cai T T, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise[J]. IEEE Transactions on Information Theory, 2011, 57(7): 4680-4688.
    [23]
    Ding F, Liu X P, Liu G. Gradient based and least-squares based iterative identification methods for OE and OEMA systems[J]. Digital Signal Processing, 2010, 20(3): 664-677.
    [24]
    Blumensath T, Davies M E. Gradient pursuits[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2370-2382.
    [25]
    Mallat S. A wavelet tour of signal processing[M]. London, UK: Academic Press, 1999.
  • Related Articles

    [1]LIU Zhigang, DU Juan, XU Shaohua, TIAN Wei. Quantum-inspired Cuckoo Search Algorithm Based on Quantitatively Orthogonal Crossover[J]. INFORMATION AND CONTROL, 2017, 46(4): 408-414. DOI: 10.13976/j.cnki.xk.2017.0408
    [2]WU Dinghui, ZHAI Yanjie. Fault Diagnosis for the Pitch System of Wind Turbines Using the System Identification Algorithm[J]. INFORMATION AND CONTROL, 2016, 45(5): 563-567,574. DOI: 10.13976/j.cnki.xk.2016.0563
    [3]SONG Heping, WANG Guoli. Sparse Signal Recovery via Residual Minimization Pursuit[J]. INFORMATION AND CONTROL, 2014, 43(6): 722-726,734. DOI: 10.13976/j.cnki.xk.2014.0722
    [4]YANG Qi, XUE Dingyu. Gait Recognition Based on Sparse Representation and Segmented Frame Difference Energy Image[J]. INFORMATION AND CONTROL, 2013, 42(1): 27-32. DOI: 10.3724/SP.J.1219.2013.00027
    [5]YANG Ronggen, REN Mingwu, YANG Jingyu. Time Delay Estimation Algorithms for Leak Signal Location[J]. INFORMATION AND CONTROL, 2011, 40(1): 8-13.
    [6]CHANG Gui-juan, ZHANG Ji-hui. Immune Genetic Algorithm Based on Orthogonal Experiment for Scheduling Problems[J]. INFORMATION AND CONTROL, 2008, 37(1): 46-51.
    [7]HU Kun-yuan, CHANG Chun-guang, ZHENG Bing-lin, WANG Ding-wei. The Model and Algorithm for Joint Optimization of Inventory Matching and Production Planning in Steel Plant[J]. INFORMATION AND CONTROL, 2004, 33(2): 177-180,196.
    [8]HU Yangzeng, GU Xingsheng, GE Zuguang, LU Jun. PIECEWISE MULTIPLE GENERAL ORTHOGONAL POLYNOMIALS METHOD TO PARAMETER IDENTIFICATION FOR A CLASS OF SYSTEM[J]. INFORMATION AND CONTROL, 1991, 20(3): 25-32.
    [9]ZHENG Weixin, FENG Chunbo. AN OPTIMIZING SEARCH BASED IDENTIFICATION METHOD OF STOCHASTIC TIME-DELAY SYSTEMS[J]. INFORMATION AND CONTROL, 1989, 18(1): 19-25.
    [10]WANG Dingwei. A METHOD OF IDENTIFICATION OF EFFICIENCY CURVES OF MULTI-FUEL BOILERS[J]. INFORMATION AND CONTROL, 1988, 17(2): 16-20.

Catalog

    Article views (802) PDF downloads (327) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return